Latent Dirichlet Allocation for Protein Inference in Quantitative Proteomics
定量蛋白质组学中蛋白质推断的潜在狄利克雷分配
基本信息
- 批准号:8771434
- 负责人:
- 金额:$ 16.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAreaBayesian ModelingBioinformaticsBiologicalBiological MarkersBiological ProcessCancer CenterCharacteristicsChronic DiseaseClinicalComplexComputing MethodologiesDataDevelopmentDiabetes MellitusDiseaseEnzymesEquipmentEvaluationGoalsHead and Neck Squamous Cell CarcinomaHealthIndividualKnowledgeLaboratoriesLeadLiquid ChromatographyMalignant NeoplasmsMapsMass Spectrum AnalysisMeasurementMedicalMethodsModelingMolecularNoisePathogenesisPatientsPeptide FragmentsPeptidesPopulation HeterogeneityProcessProtein FragmentProteinsProteomicsReadingResearch PersonnelResearch Project GrantsSamplingScientistSensitivity and SpecificityShotgunsSolutionsSpecimenTechniquesTechnologyTrypsinValidationanticancer researchbaseimprovedinterestmass spectrometernovelpersonalized medicineprotein aminoacid sequenceprotein profilingresearch studytext searchingtumor
项目摘要
DESCRIPTION (provided by applicant): One way to accelerate the understanding of the molecular basis of cancer is through the application of robust, quantitative, proteomic technologies and corresponding computational methodologies. Mass spectroscopy measurement technology for peptides (LC-MS/MS) is rapidly advancing, and there is a great need for more development of the corresponding bioinformatics analysis techniques to infer proteins from the peptide spectra. The Latent Dirichlet Allocation (LDA) for Protein Inference in Quantitative Proteomics research project will adapt LDA, an established method of topic modeling from text mining, to the problem of protein inference. Advances in protein inference will be of great utility and interest in cancer clinical proteomics studies. Successfully deploying
these methods will directly lead to an increase in the ability of proteomics to augment cancer research in many important areas such as biomarker discovery, pathogenesis, and patient-specific tumor therapies. Two specific aims in support of these goals will be undertaken during the proposed project: * Aim 1. Investigate how to best apply latent Dirichlet allocation modeling techniques previously used in text mining to the problem of protein inference. Areas to explore include the application of biological and domain knowledge constraints to the model as well as parameter optimization techniques. Tune and evaluate the approach in terms of accuracy, sensitivity, and specificity on a set of simulated protein-peptide fragment data with various amounts of noise and errors in the peptide reading process. Further evaluation and validation will be performed using LC-MS/MS data produced from proteomic laboratory standards that provide a known solution to complex real-world data samples. * Aim 2. Demonstrate the utility of the latent Dirichlet allocation-based protein inference techniques by application to experimental cancer data. A head and neck squamous cell carcinoma (SCC) study from the Vanderbilt-Ingram Cancer Center providing public data will be utilized allowing the comparison of results using LDA with those obtained by current standard techniques in terms of prediction overlap, differences, and confidence levels.
描述(由申请人提供):加速理解癌症分子基础的一种方法是通过应用稳健的定量蛋白质组学技术和相应的计算方法。多肽的质谱测量技术(LC-MS/MS)发展迅速,需要进一步发展相应的生物信息学分析技术,从多肽谱图中推断蛋白质。定量蛋白质组学研究项目中蛋白质推理的潜在狄利克雷分配(LDA)将LDA(一种从文本挖掘中建立的主题建模方法)应用于蛋白质推理问题。蛋白质推断的进展将在癌症临床蛋白质组学研究中具有巨大的实用性和兴趣。成功部署
这些方法将直接提高蛋白质组学在许多重要领域(例如生物标志物发现、发病机制和患者特异性肿瘤治疗)增强癌症研究的能力。在拟议的项目期间,将实现两个具体目标,以支持这些目标:* 目标1。研究如何最好地将文本挖掘中使用的潜在Dirichlet分配建模技术应用于蛋白质推理问题。探索的领域包括生物和领域知识的约束模型的应用,以及参数优化技术。在肽阅读过程中具有不同数量的噪声和误差的一组模拟蛋白质-肽片段数据上,根据准确度、灵敏度和特异性调整和评估该方法。将使用蛋白质组学实验室标准品产生的LC-MS/MS数据进行进一步评价和验证,这些标准品为复杂的真实世界数据样本提供了已知的解决方案。* 目标二。通过应用于实验性癌症数据,展示基于潜在狄利克雷分配的蛋白质推断技术的实用性。将利用范德比尔特-英格拉姆癌症中心提供的公开数据进行头颈部鳞状细胞癌(SCC)研究,以便在预测重叠、差异和置信水平方面将使用LDA的结果与通过当前标准技术获得的结果进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON M. COHEN其他文献
AARON M. COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON M. COHEN', 18)}}的其他基金
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
9310440 - 财政年份:2010
- 资助金额:
$ 16.75万 - 项目类别:
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
8142241 - 财政年份:2010
- 资助金额:
$ 16.75万 - 项目类别:
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
8325177 - 财政年份:2010
- 资助金额:
$ 16.75万 - 项目类别:
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
7950308 - 财政年份:2010
- 资助金额:
$ 16.75万 - 项目类别:
Assisting Systematic Review Preparation Using Automated Document Classification
使用自动文档分类协助系统审查准备
- 批准号:
7664538 - 财政年份:2007
- 资助金额:
$ 16.75万 - 项目类别:
Assisting Systematic Review Preparation Using Automated Document Classification
使用自动文档分类协助系统审查准备
- 批准号:
7242352 - 财政年份:2007
- 资助金额:
$ 16.75万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant