Assisting Systematic Review Preparation Using Automated Document Classification
使用自动文档分类协助系统审查准备
基本信息
- 批准号:7242352
- 负责人:
- 金额:$ 29.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2010-07-14
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAreaClassificationDataData SetDevelopmentEvaluationFutureGoldGuidelinesHumanKnowledgeLiteratureMachine LearningMedicalMedicineMethodsNumbersPaperPerformancePreparationProcessPublic HealthPublicationsPublishingResearchResearch PersonnelResourcesReview, Systematic (PT)Standards of Weights and MeasuresSystemTechniquesTechnologyTestingTextTherapeuticTimeTrainingTriageUpdateWorkbasecomparativeexpectationjournal articlepreferenceprogramsprospectivetext searchingvector
项目摘要
DESCRIPTION (provided by applicant):
The work proposed in this new investigator initiated project studies the hypothesis that machine learning-based text classification techniques can add significant efficiencies to the process of updating systematic reviews (SRs). Because new information constantly becomes available, medicine is constantly changing, and SRs must undergo periodic updates in order to correctly represent the best available medical knowledge at a given time.
To support studying this hypothesis, the work proposed here will undertake four specific aims:
1. Refinement and further development of text classification algorithms optimized for use in classifying
literature for the update of systematic reviews on a variety of therapeutic domains. Comparative analysis using several different machine learning techniques and strategies will be studied, as well as various means of representing the journal articles as feature vectors input to the process.
2. Identification and evaluation of systematic review expert preferences and trade offs between high recall and high precision classification systems. There are several opportunities for including this technology in the process of creating SRs. Each of these applications has separate and unique precision and recall tradeoff thresholds that will be studied based on the benefit to systematic reviews.
3. Prospective evaluation of text classification algorithms. We will verify that our approach performs as
expected on future data.
4. Development of comprehensive gold standard test and training sets to motivate and evaluate the
proposed and future work in this area.
The long term relevance of this research to public health is that automated document classification will
enable more efficient use of expert resources to create systematic reviews. This will increase both the
number and quality of reviews for a given level of public support. Since up-to-date systematic reviews are essential for establishing widespread high quality practice standards and guidelines, the overall public health will benefit from this work.
描述(由申请人提供):
在这个新的研究者发起的项目中提出的工作研究了一个假设,即基于机器学习的文本分类技术可以显著提高系统评价(SR)更新过程的效率。由于新的信息不断出现,医学也在不断变化,因此工作人员报告必须定期更新,以便正确地反映特定时间内现有的最佳医学知识。
为了支持对这一假设的研究,这里提出的工作将实现四个具体目标:
1.改进和进一步开发优化用于分类的文本分类算法
各种治疗领域的系统评价更新文献。将研究使用几种不同的机器学习技术和策略的比较分析,以及将期刊文章表示为输入到该过程的特征向量的各种方法。
2.识别和评价系统评价专家的偏好和高召回率和高精度分类系统之间的权衡。在创建工作人员代表的过程中,有几个机会可以纳入这一技术。这些应用程序中的每一个都有单独和唯一的精确度和召回率权衡阈值,将根据系统评价的益处进行研究。
3.文本分类算法的前瞻性评估。我们将验证我们的方法的性能,
预计未来的数据。
4.制定全面的黄金标准测试和培训集,以激励和评估
这方面的工作和今后的工作。
这项研究与公共卫生的长期相关性在于,自动化文档分类将
更有效地利用专家资源,创建系统性评价。这将增加
在一定程度的公众支持下,审查的数量和质量。由于最新的系统评价对于建立广泛的高质量实践标准和指南至关重要,因此整体公共卫生将从这项工作中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON M. COHEN其他文献
AARON M. COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON M. COHEN', 18)}}的其他基金
Latent Dirichlet Allocation for Protein Inference in Quantitative Proteomics
定量蛋白质组学中蛋白质推断的潜在狄利克雷分配
- 批准号:
8771434 - 财政年份:2014
- 资助金额:
$ 29.21万 - 项目类别:
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
9310440 - 财政年份:2010
- 资助金额:
$ 29.21万 - 项目类别:
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
8142241 - 财政年份:2010
- 资助金额:
$ 29.21万 - 项目类别:
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
8325177 - 财政年份:2010
- 资助金额:
$ 29.21万 - 项目类别:
Text Mining Pipeline to Accelerate Systematic Reviews in Evidence-Based Medicine
文本挖掘管道加速循证医学的系统审查
- 批准号:
7950308 - 财政年份:2010
- 资助金额:
$ 29.21万 - 项目类别:
Assisting Systematic Review Preparation Using Automated Document Classification
使用自动文档分类协助系统审查准备
- 批准号:
7664538 - 财政年份:2007
- 资助金额:
$ 29.21万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
NESP MaC Project 1.22 - A photo-identification study of southern right whales to update aggregation area classification in the southwest of Australia
NESP MaC 项目 1.22 - 对南露脊鲸进行照片识别研究,以更新澳大利亚西南部的聚集区域分类
- 批准号:
global : 435a4b98-d5f8-48be-8b9c-79812afd094d - 财政年份:2021
- 资助金额:
$ 29.21万 - 项目类别:
NESP MaC Project 1.22 - A photo-identification study of southern right whales to update aggregation area classification in the southwest of Australia
NESP MaC 项目 1.22 - 对南露脊鲸进行照片识别研究,以更新澳大利亚西南部的聚集区域分类
- 批准号:
global : 435a4b98-d5f8-48be-8b9c-79812afd094d - 财政年份:2021
- 资助金额:
$ 29.21万 - 项目类别:
Combining acoustic and visual survey data through multimodal machine learning for wide area seafloor habitat classification
通过多模式机器学习结合声学和视觉调查数据进行广域海底栖息地分类
- 批准号:
2570102 - 财政年份:2021
- 资助金额:
$ 29.21万 - 项目类别:
Studentship
Development of large-area dislocation detection and classification techniques for next-generation power semiconductor beta-Ga2O3
下一代功率半导体β-Ga2O3大面积位错检测和分类技术开发
- 批准号:
20K05355 - 财政年份:2020
- 资助金额:
$ 29.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hybrid geodemographics and creation of the 2021 Output Area Classification (ONS Collab)
混合地理人口统计和 2021 年输出区域分类的创建(ONS 协作)
- 批准号:
2223619 - 财政年份:2019
- 资助金额:
$ 29.21万 - 项目类别:
Studentship
Classification Methodology and Small Area Variation Analysis of Prescription Drugs in a Publicly Insured Senior Population
公保老年人群处方药分类方法及小区域变异分析
- 批准号:
380661 - 财政年份:2018
- 资助金额:
$ 29.21万 - 项目类别:
Visualization and classification of landscapes of tombs of the final kofun period in Kawachi and Yamato area using 3D GIS
使用 3D GIS 对河内和大和地区古坟末期坟墓景观进行可视化和分类
- 批准号:
17K18276 - 财政年份:2017
- 资助金额:
$ 29.21万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Distribution of marine diatom small Chaetoceros spp. in coastal area in Japan and the classification using the technique of molecular biology
海洋硅藻小角毛藻的分布。
- 批准号:
17K07888 - 财政年份:2017
- 资助金额:
$ 29.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification in types of traditional farming systems and local-style dishes in the mesomountainous area of Shikoku District, Japan
日本四国地区中山地区传统农耕制度与乡土风味的分类
- 批准号:
26360015 - 财政年份:2014
- 资助金额:
$ 29.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Detection and Classification of Landslide and/or Stricken Residential Area in Mountainous Region Using Radar Polarimetry
利用雷达旋光法对山区滑坡和/或受灾住宅区进行检测和分类
- 批准号:
19510183 - 财政年份:2007
- 资助金额:
$ 29.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)