Clinical Decision Support for Mild Traumatic Brain Injury

轻度创伤性脑损伤的临床决策支持

基本信息

  • 批准号:
    9053440
  • 负责人:
  • 金额:
    $ 15.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-09 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): CANDIDATE: Dr. Edward R. Melnick is an Assistant Professor in the Department of Emergency and currently a student in the Master of Health Science Degree program with Clinical Informatics Track at the Yale University School of Medicine. His research focuses on improving clinical practice guideline implementation using computerized Clinical Decision Support (CDS). Traditional CDS consists of alerts or reminders presented to the clinician regarding patient-specific recommendations. Dr. Melnick has a track record for scholarly productivity with 13 peer-reviewed publications over the last five years. He is also an active member of the national clinical practice guideline development group for emergency medicine. The long-term goal of Dr. Melnick's research program is to become an independent investigator whose research program is aimed at changing the acute care clinical encounter paradigm by developing systematic patient-centered methods that promote transparent, shared, informed decision-making to safely reduce resource utilization. He plans to devote his career to overcoming the design challenges to effective CDS thus incorporating CDS that is useful, usable, promotes shared decision-making, and is seamlessly integrated into clinical workflow. Dr. Melnick's design innovations will change the way that health care is delivered and, subsequently, achieve a significant impact on patient outcomes, health care quality, safety, efficiency, costs, and effectiveness for all Americans. ENVIRONMENT & MENTOR: The Department of Emergency Medicine at the Yale University School of Medicine offers a fertile environment for physician-scientists committed to clinical research. The Department and University offer abundant research support and resources for professional development and research excellence. During the proposed award, Dr. Melnick will develop his skills by completing: (1) his ongoing master's of health science degree program with clinical informatics track, (2) formal coursework in human- computer interaction, medical decision-making, databases, and clinical information systems, and (3) goal- directed training activities in CDS, cognitive task analysis, human factors engineering, qualitative research methods, and implementation science under the mentorship of Drs. Shiffman and Post. Dr. Shiffman, Professor and Associate Director for the Yale Center for Medical Informatics, is a well-established researcher whose work focuses on defining systematic and replicable processes by which guideline knowledge can be translated into CDS. Dr. Post, Associate Professor and Research Director of Emergency Medicine at Yale, is an expert in Health Information Technology research using qualitative and mixed methods including experiences with focus groups, survey research, and usability testing. RESEARCH PROJECT: The objective of this project is to pilot an innovative CDS design process that produces patient-centered, useful, and usable CDS for the management of minor head injury in the emergency department (ED). The ED is the ideal setting to study overuse of diagnostic imaging as imaging rates of injured patients have tripled over ten years without a measurable improvement in patient outcomes, despite implementation of highly sensitive and specific clinical decision rules for detecting clinically important brain injury in minor head injury patients. Evidence-based best practices face barriers to implementation including: lack of awareness, agreement, and adherence. CDS offers a promising strategy to improve guideline implementation. Despite forty years of implementation attempts, CDS has not been universally adopted nor have its benefits been fully realized. Several adoption barriers have been identified with the primary challenge being the "usefulness" (whether it accomplishes its objective) and "usability" (ease-of-use) of the CDS due to poor integration into clinical workflow. This investigation will rely on qualitative methods to identify factors that promote or inhibit the appropriate use of computed tomography (CT) in patients presenting to the ED with minor head injury. Qualitative factors identified in this analysis will b integrated into the design of a patient- centered decision support tool prototype for use by patients and their provider at the bedside. This tool will undergo iterative refinement via rigorou usability testing in the usability lab and the ED in order to maximize its usefulness, efficiency, ease-of-use, user satisfaction, integration into clinical workflow, and ability to promote shared decision-making regarding the appropriate use of CT. The feasibility of implementing this patient- centered decision support at the bedside in a high-volume ED will be provide data for the subsequent clinical trial. The data generated from this pilot is critical to take my research program to the next level-an effectiveness study of the patient-centered decision support tool to safely reduce CT use. This proposal fulfills the Agency for Healthcare Research and Quality (AHRQ) research priority of training investigators in health information technology to improve health care decision-making and support patient-centered care. It will be piloted in the Yale-New Haven ED whose patients include an inner-city population with large minority and low- income groups-two AHRQ priority populations. The tool will include special provisions for shared decision- making with the elderly, another AHRQ priority population.
描述(由申请人提供):候选人:爱德华博士。Melnick是急诊部的助理教授,目前是耶鲁大学医学院临床信息学轨道健康科学硕士学位课程的学生。他的研究重点是使用计算机化临床决策支持(CDS)改善临床实践指南的实施。传统的CDS由呈现给临床医生的关于患者特定建议的警报或提醒组成。Melnick博士在过去五年中发表了13篇同行评议的学术论文。他也是国家急诊医学临床实践指南开发小组的积极成员。Melnick博士的研究计划的长期目标是成为一名独立的研究者,其研究计划旨在通过开发以患者为中心的系统方法来改变急性护理临床遇到的范式,这些方法促进透明,共享,知情的决策,以安全地减少资源利用。他计划将自己的职业生涯致力于克服有效CDS的设计挑战,从而将有用、可用、促进共享决策并无缝集成到临床工作流程中的CDS结合起来。Melnick博士的设计创新将改变医疗保健的提供方式,并随后对所有美国人的患者结局、医疗保健质量、安全性、效率、成本和有效性产生重大影响。环境&导师:耶鲁大学医学院急诊医学系为致力于临床研究的医生科学家提供了一个肥沃的环境。该部门和大学提供丰富的研究支持和资源,为专业发展和卓越的研究。在拟议的奖励期间,Melnick博士将通过完成以下工作来发展自己的技能:(1)他正在进行的健康科学硕士学位课程与临床信息学轨道,(2)在人机交互,医疗决策,数据库和临床信息系统的正式课程,和(3)在CDS,认知任务分析,人为因素工程,定性研究方法的目标导向的培训活动,Shiffman博士和Post博士的指导下,Shiffman博士是耶鲁大学医学信息学中心的教授兼副主任,是一位成熟的研究人员,其工作重点是定义系统和可复制的过程,通过这些过程可以将指南知识转化为CDS。Post博士是耶鲁大学急诊医学副教授兼研究主任,是使用定性和混合方法进行健康信息技术研究的专家,包括焦点小组,调查研究和可用性测试的经验。研究项目:本项目的目的是试验一种创新的CDS设计过程,生产以患者为中心的、有用的和可用的CDS,用于急诊科(艾德)轻微头部损伤的管理。艾德是研究过度使用诊断成像的理想环境,因为受伤患者的成像率在十年内增加了两倍,但患者结局没有可测量的改善,尽管实施了高度敏感和特异性的临床决策规则来检测轻微头部损伤患者的临床重要脑损伤。基于证据的最佳做法面临 执行障碍包括:缺乏认识、协议和遵守。CDS提供了一个很有前途的策略,以改善指南的实施。尽管有40年的实施尝试,CDS还没有被普遍采用,也没有充分实现其好处。已经确定了几个采用障碍,主要挑战是CDS的“有用性”(是否实现其目标)和“可用性”(易用性),因为与临床工作流程的集成较差。本次调查将依靠定性的方法来确定 在因轻微头部损伤而就诊于艾德的患者中,促进或抑制计算机断层扫描(CT)适当使用的因素。在此分析中识别的定性因素将被B整合到以患者为中心的决策支持工具原型的设计中,以供患者及其提供者在床边使用。该工具将通过可用性实验室和艾德的严格可用性测试进行迭代改进,以最大限度地提高其有用性、效率、易用性、用户满意度、与临床工作流程的集成以及促进有关CT适当使用的共享决策的能力。在高容量艾德病房实施以病人为中心的床旁决策支持的可行性将为后续的临床试验提供数据。从这个试点产生的数据是至关重要的,把我的研究计划到一个新的水平-一个有效性研究的病人为中心的决策支持工具,以安全地减少CT的使用。该提案符合医疗保健研究和质量机构(AHRQ)的研究重点,即培训卫生信息技术研究人员,以改善医疗保健决策并支持以患者为中心的护理。它将在耶鲁-纽黑文艾德进行试点,其患者包括市中心人口,其中有大量少数民族和低收入群体-两个AHRQ优先人群。该工具将包括与老年人共同决策的特别规定,老年人是亚洲人权问题机构的另一个优先群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Robert Melnick其他文献

Edward Robert Melnick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Robert Melnick', 18)}}的其他基金

ADAPT: Adaptive Decision support for Addiction Treatment
ADAPT:成瘾治疗的自适应决策支持
  • 批准号:
    10810953
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
Clinical Decision Support for Mild Traumatic Brain Injury
轻度创伤性脑损伤的临床决策支持
  • 批准号:
    8509976
  • 财政年份:
    2013
  • 资助金额:
    $ 15.4万
  • 项目类别:
Clinical Decision Support for Mild Traumatic Brain Injury
轻度创伤性脑损伤的临床决策支持
  • 批准号:
    8660304
  • 财政年份:
    2013
  • 资助金额:
    $ 15.4万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
  • 批准号:
    10603902
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
  • 批准号:
    10734148
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
  • 批准号:
    2344731
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Clinical Decision Support Software for diagnosing and managing eye conditions (Glaucoma) from routine Retinal Fundus Images
用于通过常规视网膜眼底图像诊断和管理眼部疾病(青光眼)的临床决策支持软件
  • 批准号:
    10055213
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Collaborative R&D
Development of a Novel Venous Thromboembolism Risk Assessment Model for Perioperative Clinical Decision Support
开发用于围手术期临床决策支持的新型静脉血栓栓塞风险评估模型
  • 批准号:
    10748559
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
  • 批准号:
    10699074
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
  • 批准号:
    10699457
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
I-Corps: A Clinical Decision Support Tool to Manage Abdominal Aortic Aneurysm Patients
I-Corps:管理腹主动脉瘤患者的临床决策支持工具
  • 批准号:
    2318665
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Improving safety and quality of emergency care using machine learning-based clinical decision support at triage
在分诊时使用基于机器学习的临床决策支持提高紧急护理的安全性和质量
  • 批准号:
    10735138
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
GARDE: Scalable Clinical Decision Support for Individualized Cancer Risk Management
GARDE:个性化癌症风险管理的可扩展临床决策支持
  • 批准号:
    10741231
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了