TRIM9 coordinates membrane trafficking and cytoskeletal dynamics
TRIM9 协调膜运输和细胞骨架动力学
基本信息
- 批准号:8991497
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdultAffectAreaAxonBehaviorBindingBiochemistryBrainCell membraneComplexCorpus CallosumCuesCytoskeletal ProteinsCytoskeletonDataDefectDevelopmentDiseaseElectroporationEmbryoExhibitsExocytosisF-ActinFiberFilopodiaGap JunctionsGeneticGoalsGrowth ConesHealthHumanImageImage AnalysisIn VitroIndividualInjuryKnockout MiceLeadLinkLocomotionMediatingMembraneMembrane Protein TrafficMembrane ProteinsMicrofluidic MicrochipsMicroscopyMicrotubule PolymerizationMicrotubulesMolecularMorphologyMovementMusNerveNerve FibersNervous System TraumaNervous system structureNeuraxisNeuritesNeurologicNeuronsPhenotypePhospholipidsPlayPositioning AttributePrimary Cell CulturesProtein FamilyProteinsRehabilitation therapyResearchSNAP receptorSignal TransductionSpinal cord injurySurfaceSynapsesSyndromeTestingVertebral columnVesicleWorkaxon growthaxon guidancebasecentral nervous system injurydensityin uteroin vivoinsightlive cell imagingmicrotubule-associated protein 1Bmouse modelmutantnervous system developmentnetrin receptornovelpolymerizationpostsynapticquantitative imagingreceptorrelating to nervous systemrepairedresponsetherapeutic developmenttherapy designtraffickingubiquitin ligaseubiquitin-protein ligasevasodilator-stimulated phosphoprotein
项目摘要
DESCRIPTION (provided by applicant): Damage to connections within the adult Central Nervous System (CNS) by injury or disease is often irreparable. To design therapies to repair CNS damage requires a detailed understanding of the cellular mechanisms underlying CNS development. As the brain develops, neurotrophic cues, such as netrin, guide axons to their postsynaptic targets and induce axon branching to increase synaptic capacity. Both the guided locomotion of axonal growth cones, and their ramification into multiple axon branches, require the same fundamental cellular machinery. F-actin and microtubule (MT) dynamics initiate and steer membrane protrusions. Exocytosis delivers phospholipids and membrane proteins required to supply material to the expanding plasma membrane. Coordination of cytoskeletal dynamics and vesicle trafficking likely plays key roles in axon guidance and branching. However, the molecular mechanisms that mediate such interactions during axon guidance and axon branching are not understood. Our findings place TRIM9 at the junction of netrin/DCC signaling to both the cytoskeletal and vesicle trafficking machinery. Using a combination of mouse genetics, primary cell culture, live cell imaging and neuroanatomical studies, my lab found that TRIM9-deficient cortical neurons show misregulated exocytosis and defective actin and MT dynamics. Furthermore, we found that cortical neurons devoid of TRIM9 have constitutive branching defects, fail to form from branches in response to netrin, and are defective in netrin-based axon guidance. In vivo, we have found that loss of TRIM9 is associated with defective cortical axon fiber tracts. Our findings that TRIM9 interacts with and regulates the exocytic tSNARE, SNAP25, lead us to hypothesis that TRIM9 spatially and temporally regulates exocytosis in the growing axon. Novel interactions identified with multiple cytoskeletal regulators, including Ena/VASP proteins, Lamellipodin, and MAP1B lead us to hypothesize that TRIM9 participates in protein networks that play key roles in F-actin and MTs dynamics. As we have found that TRIM9 binds directly to the netrin receptor, DCC, and is required for functions downstream of the axon guidance cue netrin, we hypothesize that TRIM9 is essential for the coordinated activities of the cytoskeleton and exocytosis that dictate axon branching and guidance in response to netrin/DCC. My lab is in a unique position to determine the molecular mechanism that link guidance cues to local changes in cytoskeletal dynamics and axon branching through live-cell imaging, quantitative image analysis, biochemistry, and mouse models. Our long-term goal is to understand how neurons integrate environmental cues to orchestrate changes in their morphology and movement necessary to establish a functional nervous system. A better understanding of the mechanistic basis of axon guidance and axon branching will provide fundamental insight into how connections in the nervous system are established and how they are remodeled during plasticity. The results of our research plan should be of great value to the development of therapeutic approaches to repair these connections subsequent to disease or injury.
描述(由申请人提供):损伤或疾病对成人中枢神经系统(CNS)内连接的损害通常是不可修复的。设计治疗方法来修复中枢神经系统损伤需要详细了解中枢神经系统发展的细胞机制。随着大脑的发育,神经营养因子(如netrin)将轴突引导到它们的突触后靶点,并诱导轴突分支以增加突触能力。轴突生长锥的引导运动和它们分化成多个轴突分支都需要相同的基本细胞机制。F-肌动蛋白和微管(MT)动力学启动和操纵膜突起。胞吐作用提供磷脂和膜蛋白,为扩张的质膜提供物质。细胞骨架动力学和囊泡运输的协调可能在轴突导向和分支中起关键作用。然而,在轴突引导和轴突分支过程中介导这种相互作用的分子机制尚不清楚。我们的研究结果将TRIM 9置于netrin/DCC信号传导到细胞骨架和囊泡运输机制的连接处。使用小鼠遗传学,原代细胞培养,活细胞成像和神经解剖学研究的组合,我的实验室发现TRIM 9缺陷的皮质神经元表现出失调的胞吐作用和缺陷的肌动蛋白和MT动力学。此外,我们发现缺乏TRIM 9的皮质神经元具有组成性分支缺陷,未能响应netrin从分支形成,并且在基于netrin的轴突引导中存在缺陷。在体内,我们发现TRIM 9的缺失与皮质轴突纤维束缺陷有关。我们的研究结果,TRIM 9相互作用,并调节胞吐tSNARE,SNAP 25,使我们的假设,TRIM 9空间和时间调节胞吐在生长的轴突。与多种细胞骨架调节剂,包括Ena/VASP蛋白,Lamelliopodin和MAP 1B确定的新的相互作用使我们假设TRIM 9参与在F-肌动蛋白和MT动力学中发挥关键作用的蛋白质网络。由于我们已经发现TRIM 9直接结合到netrin受体DCC,并且是轴突导向因子netrin下游功能所必需的,因此我们假设TRIM 9对于细胞骨架和胞吐作用的协调活动是必不可少的,所述细胞骨架和胞吐作用决定轴突分支和响应netrin/DCC的导向。我的实验室是在一个独特的位置,以确定通过活细胞成像,定量图像分析,生物化学和小鼠模型的细胞骨架动力学和轴突分支的局部变化的分子机制,链接的指导线索。我们的长期目标是了解神经元如何整合环境线索,以协调建立功能性神经系统所需的形态和运动变化。更好地理解轴突引导和轴突分支的机制基础将为神经系统中的连接如何建立以及它们在可塑性期间如何重塑提供基本的见解。我们的研究计划的结果应该是非常有价值的治疗方法,以修复这些连接后,疾病或损伤的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Gupton其他文献
Stephanie Gupton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Gupton', 18)}}的其他基金
Netrin Glycosylation Influences Chemotaxis and Haptotaxis
Netrin 糖基化影响趋化性和趋触性
- 批准号:
10665243 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Exploring The Brain Enriched E3 Ubiquitin Ligase TRIM9 in Alzheimer's Disease
探索大脑富含 E3 泛素连接酶 TRIM9 在阿尔茨海默病中的作用
- 批准号:
10467201 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Coordinated Cytoskeletal Dynamics and Membrane Remodeling in Cellular Shape Change
细胞形状变化中协调的细胞骨架动力学和膜重塑
- 批准号:
10306344 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Exocytosis fuels plasma membrane expansion in developing neurons
胞吐作用促进发育中神经元的质膜扩张
- 批准号:
10402882 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Coordinated Cytoskeletal Dynamics and Membrane Remodeling in Cellular Shape Change
细胞形状变化中协调的细胞骨架动力学和膜重塑
- 批准号:
10063996 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Administrative Equipment Supplement for GM135160
GM135160 行政设备补充
- 批准号:
10387434 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Exocytosis fuels plasma membrane expansion in developing neurons
胞吐作用促进发育中神经元的质膜扩张
- 批准号:
10159320 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Investigation of TRIM9 in cell shape change in the aging brain
TRIM9 在衰老大脑细胞形状变化中的研究
- 批准号:
10121328 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)