Coordinated Cytoskeletal Dynamics and Membrane Remodeling in Cellular Shape Change
细胞形状变化中协调的细胞骨架动力学和膜重塑
基本信息
- 批准号:10063996
- 负责人:
- 金额:$ 38.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:BiochemicalBiological ModelsCell ShapeCell membraneCellsCharacteristicsCuesCytoskeletonDataDevelopmentEnvironmentExocytosisGoalsMalignant NeoplasmsMediatingMelanoma CellMembraneMolecularMonomeric GTP-Binding ProteinsMorphogenesisNeoplasm MetastasisNeuronal PlasticityNeuronsPathogenesisPathologicPathologyPhenotypePhosphotransferasesPhysiologyPlayProgram DescriptionProteinsPublishingResearchRoleShapesStructureSystemTestingUbiquitinationWorkactive controlcell motilitycell typeextracellularmelanomamorphogensneural networkneuron developmentprogramsresponsetraffickingtumor progressionubiquitin-protein ligase
项目摘要
PROGRAM DESCRIPTION
The overarching research goal of my lab is to define cellular and molecular mechanisms mediating cellular shape
change. Cellular shape change is a fundamental characteristic of metazoan cells, key to development,
physiology, and pathology. The formation and plasticity of neural networks are key examples of cell shape
change during development and physiology, whereas cell shape and motility goes awry in pathological
conditions, such as melanoma. We study two main themes during cellular shape change: The active control of
the cytoskeleton, which is acknowledged as critical to cellular shape change, and the concurrent remodeling of
the plasma membrane, which is perhaps less well appreciated. Although many cytoskeletal and membrane
remodeling components are known and their biochemical and structural characteristics described, we lack a
systematic understanding of how these disparate systems are regulated and coordinated to orchestrate cellular
shape change. Perhaps the most important problem in cell morphogenesis is understanding how cells perceive
cues in their environment and convert this extracellular information into shape changes through coordinated
cytoskeletal dynamics and plasma membrane remodeling; this is the focus of this proposal. Functions of small
GTPases and kinases have been extensively studied in regulating cytoskeletal dynamics and membrane
remodeling. Work from my lab identified an emerging role for E3 ubiquitin ligases in regulated cellular shape
change. We identified two E3 ubiquitin ligases, TRIM9 and TRIM67, which regulate cytoskeletal and exocytic
proteins and cellular shape changes in response to netrin. The extracellular morphogen netrin promotes neuronal
morphogenesis and cancer progression. Despite these important consequences, we know little about how cells
interpret netrin into shape changes. TRIM9 and TRIM67 provide an excellent opportunity to investigate the
function of ubiquitination in cytoskeletal and membrane remodeling, and how these functions are coordinated
during netrin triggered cell shape change and motility. TRIM9 and TRIM67 share similar sequences, localization,
and interaction partners, however our studies identified distinct functions of these related proteins and
antagonistic phenotypes associated with their deletion. The overarching goal of this program is to test the
hypothesis that TRIM9 and TRIM67 coordinate cytoskeletal dynamics and exocytosis during netrin-dependent
morphogenesis in multiple cell types. Since netrin plays roles in both neuronal development and cancer
pathogenesis, our work will exploit developing neurons and migrating melanoma cells as model systems. Our
preliminary and published data indicate both cell types respond to netrin and express TRIM9 and TRIM67. Our
work will illuminate fundamental generalities and cell type specific mechanisms of shape change, providing
mechanistic understanding of the coordination of the cytoskeleton and membrane trafficking during development
and metastasis.
节目描述
我实验室的首要研究目标是确定介导细胞形状的细胞和分子机制
变化细胞形状变化是后生动物细胞的基本特征,是发育的关键,
生理学和病理学。神经网络的形成和可塑性是细胞形状的关键例子
在发育和生理过程中发生变化,而在病理过程中,细胞形状和运动性发生错误。
如黑色素瘤。我们研究了细胞形状变化过程中的两个主要主题:
细胞骨架,这是公认的关键细胞形状的变化,并同时重塑
质膜,这可能是不太好理解。虽然许多细胞骨架和膜
重塑成分是已知的,它们的生化和结构特征描述,我们缺乏一个
系统地了解这些不同的系统是如何被调节和协调的,以协调蜂窝
形状变化。也许细胞形态发生中最重要的问题是了解细胞如何感知
并通过协调的方式将这种细胞外信息转化为形状变化
细胞骨架动力学和质膜重塑;这是本提案的重点。小的功能
GTP酶和激酶在调节细胞骨架动力学和膜
重塑我实验室的工作确定了E3泛素连接酶在调节细胞形状中的新作用
变化我们鉴定了两种E3泛素连接酶,TRIM 9和TRIM 67,它们调节细胞骨架和胞吐,
蛋白质和细胞形状的变化。细胞外形态原netrin促进神经元
形态发生和癌症进展。尽管有这些重要的结果,我们对细胞如何
将netrin解释为形状变化。TRIM 9和TRIM 67提供了一个很好的机会来研究
泛素化在细胞骨架和膜重塑中的作用,以及这些功能如何协调
在netrin触发细胞形状变化和运动期间。TRIM 9和TRIM 67共享相似的序列、定位,
和相互作用伙伴,然而,我们的研究确定了这些相关蛋白质的不同功能,
拮抗表型与其缺失相关。该计划的首要目标是测试
TRIM 9和TRIM 67协调netrin依赖性细胞骨架动力学和胞吐作用假说
多种细胞类型的形态发生。由于netrin在神经元发育和癌症中起作用
发病机制,我们的工作将利用发育中的神经元和迁移的黑色素瘤细胞作为模型系统。我们
初步和公开的数据表明两种细胞类型都对netrin有反应并表达TRIM 9和TRIM 67。我们
工作将阐明基本的共性和细胞类型的具体机制的形状变化,提供
对发育过程中细胞骨架和膜运输协调的机制理解
和转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Gupton其他文献
Stephanie Gupton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Gupton', 18)}}的其他基金
Netrin Glycosylation Influences Chemotaxis and Haptotaxis
Netrin 糖基化影响趋化性和趋触性
- 批准号:
10665243 - 财政年份:2023
- 资助金额:
$ 38.03万 - 项目类别:
Exploring The Brain Enriched E3 Ubiquitin Ligase TRIM9 in Alzheimer's Disease
探索大脑富含 E3 泛素连接酶 TRIM9 在阿尔茨海默病中的作用
- 批准号:
10467201 - 财政年份:2022
- 资助金额:
$ 38.03万 - 项目类别:
Super Resolution STED Microscopy at UNC
北卡罗来纳大学超分辨率 STED 显微镜
- 批准号:
10414283 - 财政年份:2022
- 资助金额:
$ 38.03万 - 项目类别:
Coordinated Cytoskeletal Dynamics and Membrane Remodeling in Cellular Shape Change
细胞形状变化中协调的细胞骨架动力学和膜重塑
- 批准号:
10306344 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Exocytosis fuels plasma membrane expansion in developing neurons
胞吐作用促进发育中神经元的质膜扩张
- 批准号:
10402882 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Administrative Equipment Supplement for GM135160
GM135160 行政设备补充
- 批准号:
10387434 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Exocytosis fuels plasma membrane expansion in developing neurons
胞吐作用促进发育中神经元的质膜扩张
- 批准号:
10159320 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Investigation of TRIM9 in cell shape change in the aging brain
TRIM9 在衰老大脑细胞形状变化中的研究
- 批准号:
10121328 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Undergraduate Research: Coordinated Cytoskeletal Dynamics and Membrane Remodeling in Cellular Shape Change
本科生研究:细胞形状变化中的协调细胞骨架动力学和膜重塑
- 批准号:
10586656 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 38.03万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 38.03万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 38.03万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 38.03万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 38.03万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 38.03万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 38.03万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:














{{item.name}}会员




