A chemical approach to elucidating the structure-function relationships of chondronitin sulfate glycosaminoglycans
阐明硫酸软骨素糖胺聚糖结构与功能关系的化学方法
基本信息
- 批准号:8965476
- 负责人:
- 金额:$ 53.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAntibodiesAxonBiological ProcessBiologyBrainCell Surface ReceptorsChemicalsChondroitin Sulfate AChondroitin SulfatesCicatrixComplexDevelopmentDiseaseEph Family ReceptorsEphrinsEventFamilyGenesGeneticGlobal ChangeGlycosaminoglycansGoalsGrantHealthImmunoglobulin FragmentsInjuryInorganic SulfatesKnockout MiceLeadLigandsMalignant NeoplasmsMediatingMethodsMolecularMonoclonal AntibodiesNatural regenerationNerve RegenerationNervous system structureNeuronal PlasticityNeuronsNeurophysiology - biologic functionNeuropilin-1Organic ChemistryPathway interactionsPatternPlayPolymersPolysaccharidesProcessProteinsReceptor ActivationRegulationResearchRoleSemaphorin-3ASignal PathwaySignal TransductionSignaling ProteinSpinal CordSpinal cord injuryStructureStructure-Activity RelationshipSynaptic plasticitySystemUnspecified or Sulfate Ion SulfatesViralVisual CortexWorkaxon regenerationcentral nervous system injurychondroitin sulfate glycosaminoglycanin vivoinhibitor/antagonistinsightmimeticsneural circuitneurodevelopmentnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsoptic nerve regenerationplexinpolysulfated glycosaminoglycanprogramsreceptorrepairedresponsesmall moleculesulfationsulfotransferasetool
项目摘要
DESCRIPTION (provided by applicant): This project will focus on chondroitin sulfate glycosaminoglycans (CS GAGs), a class of polysaccharides that play important roles in development, viral invasion, cancer, and spinal cord injury. CS GAGs display diverse sulfation patterns that are spatiotemporally regulated in vivo. However, efforts to identify functions for specific sulfation motifs have been hampered by the structural complexity of CS and a lack of tools. In this grant, we will combine the power of both organic chemistry and biology to overcome these challenges and identify novel functions for specific motifs in the nervous system. The broad objectives of this program are to: (1) advance a fundamental understanding of the structure-function relationships of CS GAGs, (2) understand the roles of CS GAGs in neuroplasticity and regeneration, and (3) develop new approaches to study and manipulate GAG-mediated biological processes, with the long-term goal of stimulating synaptic plasticity and neuronal repair. In the last granting period, we developed a set of chemical tools to study specific sulfation motifs and discovered that a particular motif, CS-E, inhibits axon regeneration after spinal cord injury. Blocking the CS-E motif using an anti-CS-E antibody stimulated axon regeneration in vivo. Moreover, we found that this same motif repels axons and plays a critical role in neural circuit formation during brain development. An important observation from this work was that the activity of CS-E required its interaction with cell-surface receptors and activation of specific inhibitory signaling pathways in neurons. In the present grant, we will develop new approaches to modulate the interactions of CS-E with neuronal receptors, including the viral-mediated delivery of single-chain anti-CS-E antibodies, small- molecule sulfotransferase inhibitors, and glycopolymer mimetics (Aim 1). We will study how CS-E regulates protein signaling complexes, with a particular focus on semaphorin-3A/neuropilin-1/plexin A (Sema3A/Nrp1/PlxnA) and ephrin/Eph receptor (Efn/Eph) complexes (Aims 2a and 3a). Finally, we will investigate the ability of the agents developed in Aim 1 to promote neuroplasticity in the visual cortex (Aims 2b,c) and axon regeneration after spinal cord injury (Aim 3b). These studies are expected to provide new chemical tools to advance an understanding of GAGs and fundamentally change how CS GAGs are viewed - from being static, passive molecules to ligands that actively regulate important signaling pathways. Finally, if successful, the agents developed in Aim 1 could lead to novel therapeutic strategies for stimulating neuronal plasticity and repair in the case of aging, injury, and disease.
描述(由适用提供):该项目将重点关注硫酸软骨糖胺聚糖(CS GAGS),这是一类在发育,病毒入侵,癌症和脊髓损伤中起重要作用的多糖。 CS插科打s显示了在体内在空间调节的潜水硫酸化模式。但是,CS的结构复杂性和缺乏工具的结构复杂性阻碍了确定特定硫酸基序的功能的努力。在这笔赠款中,我们将结合有机化学和生物学的力量来克服这些挑战,并确定神经系统中特定基序的新功能。该计划的广泛目标是:(1)对CS GAGS的结构功能关系进行基本了解,(2)了解CS GAG在神经可塑性和再生中的作用,(3)开发了研究和操纵GAG介导的生物学过程的新方法,并具有长期的刺激性塑料和Neuronaptal synapteric synapter synataptic synapter synapteral and Neurronatial and Neurronatial and Neurronatial and Neurronatial and Neurony。在最后的给予期间,我们开发了一组化学工具来研究特定的硫酸化基序,并发现特定的基序CS-E抑制脊髓损伤后轴突再生。使用抗CS-E抗体刺激体内轴突再生来阻止CS-E基序。此外,我们发现相同的基序排斥轴突,并在大脑发育过程中在神经元电路形成中起关键作用。这项工作的一个重要观察结果是,CS-E的活性需要与细胞表面受体的相互作用以及神经元中特定抑制信号通路的激活。在目前的赠款中,我们将开发新的方法来调节CS-E与神经元受体的相互作用,包括病毒介导的单链抗CS-E抗体的递送,小分子磺基转移酶抑制剂,以及糖聚聚物的小分子抑制剂和类似物的模拟物(AIM 1)。我们将研究CS-E如何调节蛋白质信号复合物,特别关注Semaphorin-3A/Neuropilin-1/Plexin-1/Plexin A(SEMA3A/NRP1/PLXNA)和EPHRIN/EPH受体(EFN/EPH)复合物(AIMS 2A和3A)。最后,我们将研究AIM 1中发展的代理在脊髓损伤后(AIMS 2B,C)和轴突再生中促进神经可塑性的能力(AIM 3B)。预计这些研究将提供新的化学工具,以提高人们对插科打g的了解,并从根本上改变观察CS插科打的方式 - 从是静态的,被动分子到积极调节重要信号通路的配体。最后,如果成功的话,AIM 1中开发的试剂可能会导致新的热策略在衰老,损伤和疾病的情况下刺激神经元可塑性和修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda C Hsieh-Wilson其他文献
Linda C Hsieh-Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda C Hsieh-Wilson', 18)}}的其他基金
Expedited Synthesis of Glycosaminoglycans Containing Defined Sulfation Domains
含有特定硫酸化结构域的糖胺聚糖的快速合成
- 批准号:
8985640 - 财政年份:2015
- 资助金额:
$ 53.63万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8220729 - 财政年份:2010
- 资助金额:
$ 53.63万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
7918318 - 财政年份:2010
- 资助金额:
$ 53.63万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondronitin sulfate glycosaminoglycans
阐明硫酸软骨素糖胺聚糖结构与功能关系的化学方法
- 批准号:
9134776 - 财政年份:2010
- 资助金额:
$ 53.63万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8423815 - 财政年份:2010
- 资助金额:
$ 53.63万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8053893 - 财政年份:2010
- 资助金额:
$ 53.63万 - 项目类别:
Role of Fucosyl Saccharides and O-GlcNAc Glycosylation in Neuronal Communication
岩藻糖基糖和 O-GlcNAc 糖基化在神经元通讯中的作用
- 批准号:
7846392 - 财政年份:2009
- 资助金额:
$ 53.63万 - 项目类别:
Role of Fucosyl Saccharides in Neuronal Communication
岩藻糖基糖在神经元通讯中的作用
- 批准号:
6747556 - 财政年份:2003
- 资助金额:
$ 53.63万 - 项目类别:
相似国自然基金
人源化小鼠筛选猴痘抗体及机制研究
- 批准号:82373778
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抗HTNV抗体mRNA修饰MSC在肾综合征出血热治疗中的作用研究
- 批准号:82302487
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向肿瘤内T细胞的双特异性抗体治疗策略研究
- 批准号:82371845
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向DLL3和γδ T细胞的双特异抗体对小细胞肺癌的免疫治疗活性研究
- 批准号:32300783
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Does Vision Loss Affect Tauopathy in the Brain
视力丧失是否会影响大脑中的 Tau 蛋白病
- 批准号:
10670631 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
Understanding Amyloid Pathology - Multiomic Activity Imaging of Plaque Formation Dynamics (AmyMAP)
了解淀粉样蛋白病理学 - 斑块形成动力学的多组学活性成像 (AmyMAP)
- 批准号:
10693962 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
Investigating the Role of LRRK2 Hyperactivity in Autophagic and Synaptic Deficits
研究 LRRK2 过度活跃在自噬和突触缺陷中的作用
- 批准号:
10549286 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别: