Evolving New Glycosaminoglycan Mimetics
不断发展的新糖胺聚糖模拟物
基本信息
- 批准号:10217188
- 负责人:
- 金额:$ 38.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-25 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffinityAlzheimer&aposs DiseaseAnti-Inflammatory AgentsAnticoagulantsAntithrombin IIIArchitectureAutoimmune DiseasesAvidityBindingBinding ProteinsBinding SitesBiological ProcessBiological Response ModifiersBlood coagulationCXCL10 geneCXCL11 geneCXCL9 geneCXCR3 geneCell ProliferationCell divisionCellsChemicalsChemotaxisChondroitin SulfatesCollaborationsCommunicable DiseasesConsumptionDementiaDevelopmentDirected Molecular EvolutionDisaccharidesDiseaseDrug TargetingEpitopesEventFGF2 geneGlycopeptidesGlycosaminoglycansGoalsGrowth FactorHIVHeparinHeparitin SulfateImmune responseIn VitroIndividualInflammationInflammation MediatorsInflammatoryLaboratoriesLeadLibrariesMacular degenerationMalignant NeoplasmsMediatingMessenger RNAMethodsMicrotubule-Associated ProteinsNeoplasm MetastasisNerve DegenerationNeurodegenerative DisordersNeuronsOligosaccharidesParkinson DiseasePathogenesisPathogenicityPathologicPathologic ProcessesPathologyPeptidesPharmaceutical PreparationsPhysiologicalPhysiological ProcessesPlayPolymersPolysaccharidesProteinsRANTESResearchRoleSamplingSignal PathwaySignal TransductionSignaling ProteinStructureStructure-Activity RelationshipSulfateTestingTherapeuticTherapeutic StudiesTimeTranslationsVariantWorkangiogenesisbasecell motilitychemokinehuman diseaseimmunoregulationin vivoinsightinterestlink proteinmigrationmimeticsmonomernanomolarneurodevelopmentneuronal growthneutralizing antibodynovelnovel strategiesnovel therapeutic interventionnovel therapeuticspathogenpolymerizationpreferenceprotein aminoacid sequenceprotein complexreceptorscaffoldstemtau Proteinstau interactiontooltransmission processuptakewound healing
项目摘要
Project Summary
Glycosaminoglycans (GAGs) play important roles in many physiological and pathological events
such as cell division, inflammation, neural development, and cancer metastasis. The long
polysaccharide chains of GAGs contain various sulfated disaccharides that are organized into
sulfate-rich and under-sulfated domains. This rich structural diversity enables GAGs such as
heparan sulfate (HS) to interact with numerous proteins and regulate key signaling pathways.
However, efforts to understand their structure-function relationships and harness their
therapeutic potential have been hampered by the chemical complexity of GAGs and a lack of
tools. At present, there are no tools to manipulate the interactions of GAGs with specific proteins
of interest, thus complicating efforts to pinpoint their precise roles. The goal of this project is to
develop novel chemical probes for selectively modulating GAG activity. We will use a directed
evolution-based approach to create a new class of GAG mimetics – multivalent glycopeptides
appended with short, active HS motifs – to modulate specific HS-protein interactions. Random
sampling of peptide sequences by directed evolution should allow for the selection of structures
containing the ideal number and arrangement of HS motifs. In addition to optimal HS clustering,
selected peptides should contain peptide motifs recognized by the protein of interest, thus
generating highly specific GAG probes. In Aim 1, we will work in collaboration with the Krauss
laboratory to develop the approach and generate HS mimetics that interact selectively with
fibroblast growth factor 2 (FGF2), a key growth factor involved in cell migration, angiogenesis,
and differentiation. In Aim 2, we will evolve glycopeptides that bind to specific forms of tau, a
microtubule-associated protein linked to dementias such as Alzheimer's disease and
Parkinson's disease. We will use these HS mimetics to understand the mechanisms underlying
tau uptake into neurons and neurodegeneration. In addition, we will explore whether our
mimetics can block the intercellular spreading of tau and its pathogenic consequences. In Aim 3,
we will evolve glycopeptides that bind chemokines (specifically CXCL9, CXCL10 and CXCL11),
a class of therapeutically important proteins that are key mediators of inflammation. Our probes
should provide unique insights into the paradoxical functional redundancy of chemokines,
enabling us to tease apart their individual roles. Together, these studies will produce a novel
class of GAG-based probes for understanding the physiological functions of GAGs and may
ultimately lead to new therapeutic leads or approaches to diseases such as cancer,
neurodegenerative diseases, inflammatory and autoimmune disorders, and infectious diseases.
项目摘要
糖胺聚糖(Glycosaminoglycans,GAG)在许多生理和病理过程中起着重要作用
例如细胞分裂、炎症、神经发育和癌症转移。长
GAG的多糖链含有各种硫酸化二糖,
富含硫酸盐和硫酸化不足的区域。这种丰富的结构多样性使GAG,
硫酸乙酰肝素(HS)与许多蛋白质相互作用并调节关键信号通路。
然而,努力了解它们的结构-功能关系并利用其
治疗潜力受到GAG化学复杂性和缺乏
工具.目前,还没有工具来操纵GAG与特定蛋白质的相互作用
因此,确定它们的确切作用的努力变得复杂。该项目的目标是
开发用于选择性调节GAG活性的新型化学探针。我们将使用定向
基于进化的方法来创建一类新的GAG模拟物-多价糖肽
附加有短的、活性的HS基序-以调节特定的HS-蛋白质相互作用。随机
通过定向进化对肽序列的取样应该允许选择结构
包含HS基序的理想数量和排列。除了最佳HS聚类之外,
所选的肽应该含有被目的蛋白识别的肽基序,
产生高度特异性的GAG探针。在目标1中,我们将与克劳斯合作,
实验室开发的方法,并产生HS模拟物,选择性地相互作用,
成纤维细胞生长因子2(FGF 2),一种参与细胞迁移,血管生成,
和差异化。在目标2中,我们将进化出与特定形式的tau蛋白结合的糖肽,
微管相关蛋白与痴呆症如阿尔茨海默病和
帕金森氏症。我们将使用这些HS模拟物来了解潜在的机制
tau摄取进入神经元和神经变性。此外,我们将探讨我们的
模拟物可以阻断tau的细胞间扩散及其致病后果。在目标3中,
我们将进化出结合趋化因子(特别是CXCL 9、CXCL 10和CXCL 11)的糖肽,
一类治疗上重要的蛋白质,是炎症的关键介质。我们的探针
应该为趋化因子的自相矛盾的功能冗余提供独特的见解,
使我们能够区分它们各自的角色。这些研究将共同产生一部小说
一类基于GAG的探针,用于了解GAG的生理功能,并且可以
最终导致新的治疗线索或方法的疾病,如癌症,
神经变性疾病、炎性和自身免疫性疾病以及感染性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda C Hsieh-Wilson其他文献
Chemical approaches to understanding O-GlcNAc glycosylation in the brain
理解大脑中 O-GlcNAc 糖基化的化学方法
- DOI:
10.1038/nchembio.68 - 发表时间:
2008-01-17 - 期刊:
- 影响因子:13.700
- 作者:
Jessica E Rexach;Peter M Clark;Linda C Hsieh-Wilson - 通讯作者:
Linda C Hsieh-Wilson
Linda C Hsieh-Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda C Hsieh-Wilson', 18)}}的其他基金
Expedited Synthesis of Glycosaminoglycans Containing Defined Sulfation Domains
含有特定硫酸化结构域的糖胺聚糖的快速合成
- 批准号:
8985640 - 财政年份:2015
- 资助金额:
$ 38.42万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8220729 - 财政年份:2010
- 资助金额:
$ 38.42万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
7918318 - 财政年份:2010
- 资助金额:
$ 38.42万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondronitin sulfate glycosaminoglycans
阐明硫酸软骨素糖胺聚糖结构与功能关系的化学方法
- 批准号:
9134776 - 财政年份:2010
- 资助金额:
$ 38.42万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8423815 - 财政年份:2010
- 资助金额:
$ 38.42万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondronitin sulfate glycosaminoglycans
阐明硫酸软骨素糖胺聚糖结构与功能关系的化学方法
- 批准号:
8965476 - 财政年份:2010
- 资助金额:
$ 38.42万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8053893 - 财政年份:2010
- 资助金额:
$ 38.42万 - 项目类别:
Role of Fucosyl Saccharides and O-GlcNAc Glycosylation in Neuronal Communication
岩藻糖基糖和 O-GlcNAc 糖基化在神经元通讯中的作用
- 批准号:
7846392 - 财政年份:2009
- 资助金额:
$ 38.42万 - 项目类别:
Role of Fucosyl Saccharides in Neuronal Communication
岩藻糖基糖在神经元通讯中的作用
- 批准号:
6747556 - 财政年份:2003
- 资助金额:
$ 38.42万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 38.42万 - 项目类别:
Continuing Grant