A chemical approach to elucidating the structure-function relationships of chondronitin sulfate glycosaminoglycans
阐明硫酸软骨素糖胺聚糖结构与功能关系的化学方法
基本信息
- 批准号:9134776
- 负责人:
- 金额:$ 51.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAntibodiesAxonBiological ProcessBiologyBrainCell Surface ReceptorsChemicalsChondroitin Sulfate AChondroitin SulfatesCicatrixComplexDevelopmentDiseaseEph Family ReceptorsEphrinsEventFamilyGenesGeneticGlobal ChangeGlycosaminoglycansGoalsGrantHealthImmunoglobulin FragmentsInjuryInorganic SulfatesKnockout MiceLeadLigandsMalignant NeoplasmsMediatingMethodsMolecularMonoclonal AntibodiesNatural regenerationNerve RegenerationNervous system structureNeuronal PlasticityNeuronsNeurophysiology - biologic functionNeuropilin-1Organic ChemistryPathway interactionsPatternPlayPolymersPolysaccharidesProcessProteinsReceptor ActivationRegulationResearchRoleSemaphorin-3ASignal PathwaySignal TransductionSignaling ProteinSpinal CordSpinal cord injuryStructureStructure-Activity RelationshipSynaptic plasticitySystemUnspecified or Sulfate Ion SulfatesViralVisual CortexWorkaxon regenerationcentral nervous system injurychondroitin sulfate glycosaminoglycanin vivoinhibitor/antagonistinsightmimeticsneural circuitneurodevelopmentnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsoptic nerve regenerationplexinpolysulfated glycosaminoglycanprogramsreceptorrepairedresponsesmall moleculesmall molecule inhibitorsulfationsulfotransferasetool
项目摘要
DESCRIPTION (provided by applicant): This project will focus on chondroitin sulfate glycosaminoglycans (CS GAGs), a class of polysaccharides that play important roles in development, viral invasion, cancer, and spinal cord injury. CS GAGs display diverse sulfation patterns that are spatiotemporally regulated in vivo. However, efforts to identify functions for specific sulfation motifs have been hampered by the structural complexity of CS and a lack of tools. In this grant, we will combine the power of both organic chemistry and biology to overcome these challenges and identify novel functions for specific motifs in the nervous system. The broad objectives of this program are to: (1) advance a fundamental understanding of the structure-function relationships of CS GAGs, (2) understand the roles of CS GAGs in neuroplasticity and regeneration, and (3) develop new approaches to study and manipulate GAG-mediated biological processes, with the long-term goal of stimulating synaptic plasticity and neuronal repair. In the last granting period, we developed a set of chemical tools to study specific sulfation motifs and discovered that a particular motif, CS-E, inhibits axon regeneration after spinal cord injury. Blocking the CS-E motif using an anti-CS-E antibody stimulated axon regeneration in vivo. Moreover, we found that this same motif repels axons and plays a critical role in neural circuit formation during brain development. An important observation from this work was that the activity of CS-E required its interaction with cell-surface receptors and activation of specific inhibitory signaling pathways in neurons. In the present grant, we will develop new approaches to modulate the interactions of CS-E with neuronal receptors, including the viral-mediated delivery of single-chain anti-CS-E antibodies, small- molecule sulfotransferase inhibitors, and glycopolymer mimetics (Aim 1). We will study how CS-E regulates protein signaling complexes, with a particular focus on semaphorin-3A/neuropilin-1/plexin A (Sema3A/Nrp1/PlxnA) and ephrin/Eph receptor (Efn/Eph) complexes (Aims 2a and 3a). Finally, we will investigate the ability of the agents developed in Aim 1 to promote neuroplasticity in the visual cortex (Aims 2b,c) and axon regeneration after spinal cord injury (Aim 3b). These studies are expected to provide new chemical tools to advance an understanding of GAGs and fundamentally change how CS GAGs are viewed - from being static, passive molecules to ligands that actively regulate important signaling pathways. Finally, if successful, the agents developed in Aim 1 could lead to novel therapeutic strategies for stimulating neuronal plasticity and repair in the case of aging, injury, and disease.
描述(由申请人提供):该项目将重点关注硫酸软骨素糖胺聚糖(CS GAG),一类在发育,病毒入侵,癌症和脊髓损伤中发挥重要作用的多糖。CS GAG显示不同的硫酸化模式,在体内时空调节。然而,由于CS的结构复杂性和缺乏工具,确定特定硫酸化基序功能的努力受到阻碍。在这项资助中,我们将联合收割机结合有机化学和生物学的力量来克服这些挑战并确定神经系统中特定基序的新功能。该计划的广泛目标是:(1)推进对CS GAG的结构-功能关系的基本理解,(2)了解CS GAG在神经可塑性和再生中的作用,以及(3)开发新的方法来研究和操纵GAG介导的生物过程,长期目标是刺激突触可塑性和神经元修复。 在最后一个授予期间,我们开发了一套化学工具来研究特定的硫酸化基序,并发现一个特定的基序,CS-E,抑制脊髓损伤后的轴突再生。使用抗CS-E抗体阻断CS-E基序刺激体内轴突再生。此外,我们发现,这个相同的基序排斥轴突,并在大脑发育过程中的神经回路形成中起着关键作用。这项工作的一个重要观察结果是,CS-E的活性需要其与细胞表面受体的相互作用和激活神经元中的特异性抑制信号通路。 在目前的资助中,我们将开发新的方法来调节CS-E与神经元受体的相互作用,包括单链抗CS-E抗体、小分子磺基转移酶抑制剂和糖基共聚物模拟物的病毒介导的递送(Aim 1)。我们将研究CS-E如何调节蛋白质信号复合物,特别关注semaphorin-3A/neuropilin-1/plexin A(Sema 3A/Nrp 1/PlxnA)和ephrin/Eph受体(Efn/Eph)复合物(目标2a和3a)。最后,我们将研究目标1中开发的药物促进视皮层神经可塑性(目标2b,c)和脊髓损伤后轴突再生(目标3b)的能力。这些研究有望提供新的化学工具,以促进对GAG的理解,并从根本上改变对CS GAG的看法-从静态,被动分子到积极调节重要信号传导途径的配体。最后,如果成功的话,目标1中开发的药物可能会导致新的治疗策略,用于刺激衰老,损伤和疾病情况下的神经元可塑性和修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda C Hsieh-Wilson其他文献
Chemical approaches to understanding O-GlcNAc glycosylation in the brain
理解大脑中 O-GlcNAc 糖基化的化学方法
- DOI:
10.1038/nchembio.68 - 发表时间:
2008-01-17 - 期刊:
- 影响因子:13.700
- 作者:
Jessica E Rexach;Peter M Clark;Linda C Hsieh-Wilson - 通讯作者:
Linda C Hsieh-Wilson
Linda C Hsieh-Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda C Hsieh-Wilson', 18)}}的其他基金
Expedited Synthesis of Glycosaminoglycans Containing Defined Sulfation Domains
含有特定硫酸化结构域的糖胺聚糖的快速合成
- 批准号:
8985640 - 财政年份:2015
- 资助金额:
$ 51.96万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8220729 - 财政年份:2010
- 资助金额:
$ 51.96万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
7918318 - 财政年份:2010
- 资助金额:
$ 51.96万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8423815 - 财政年份:2010
- 资助金额:
$ 51.96万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondronitin sulfate glycosaminoglycans
阐明硫酸软骨素糖胺聚糖结构与功能关系的化学方法
- 批准号:
8965476 - 财政年份:2010
- 资助金额:
$ 51.96万 - 项目类别:
A chemical approach to elucidating the structure-function relationships of chondr
阐明软骨结构与功能关系的化学方法
- 批准号:
8053893 - 财政年份:2010
- 资助金额:
$ 51.96万 - 项目类别:
Role of Fucosyl Saccharides and O-GlcNAc Glycosylation in Neuronal Communication
岩藻糖基糖和 O-GlcNAc 糖基化在神经元通讯中的作用
- 批准号:
7846392 - 财政年份:2009
- 资助金额:
$ 51.96万 - 项目类别:
Role of Fucosyl Saccharides in Neuronal Communication
岩藻糖基糖在神经元通讯中的作用
- 批准号:
6747556 - 财政年份:2003
- 资助金额:
$ 51.96万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 51.96万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 51.96万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 51.96万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 51.96万 - 项目类别:
Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
- 批准号:
10699504 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 51.96万 - 项目类别:














{{item.name}}会员




