Modeling Time-Dynamic Multilevel Outcomes in Patients on Dialysis
透析患者的时间动态多层次结果建模
基本信息
- 批准号:9022362
- 负责人:
- 金额:$ 33.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeCalibrationCardiovascular DiseasesCardiovascular ModelsCardiovascular systemCaringCase MixesCase-Mix AdjustmentsCause of DeathCharacteristicsChronic DiseaseComplexDataDecision MakingDialysis procedureDisease ManagementEnd stage renal failureEvaluationEventFundingGoalsGrantHospitalizationHospitalsIncidenceInfectionInformation SystemsKidneyLeadLinear ModelsLiteratureMethodsModelingNational Institute of Diabetes and Digestive and Kidney DiseasesNormalcyOutcomePatient CarePatient riskPatient-Focused OutcomesPatientsPerformancePopulationPositioning AttributeProbabilityProceduresProviderReference StandardsRiskRisk FactorsRisk ReductionSentinelSeverity of illnessStructureTimeUnited StatesWorkcardiovascular risk factordesigndisorder preventionflexibilityimprovedinnovationinsightmortalitymultilevel analysisnoveloutcome predictionpatient orientedpublic health relevanceresponsesemiparametricsimulation
项目摘要
DESCRIPTION (provided by applicant): End stage renal disease is associated with accelerated mortality, and cardiovascular (CV) disease is the leading cause of death. Of relevance to more effective care of patients on dialysis is characterizing how outcome trajectories evolve over time and identifying their associated risk factors. Elucidating the time-varying effects of patient-level risk factors, such as infection, and facility-level characteristic, such as facilities' patient care staffing composition, on patients' CV outcome over time, from the start of dialysis is important. Our long-term goal is to provide guidance in identifying modifiable
patient-level and facility-level risk factors and approaches to quality improvement of dialysis care providers. Towards this goal, we will develop a general framework to estimation and inference for multilevel time-dynamic modeling of patient outcomes that accommodates multilevel data structures (e.g., patients nested within dialysis facilities or care providers and observations over time nested within patients). Our proposed novel modeling of time- dynamic effects of risk factors of CV events and infection in patients on dialysis, is important for designing effective approaches to disease management and prevention because it allows identification of specific time periods of increased risk. In addition, the proposed framework is o relevant to facility-level decision making, including prediction of whether changes in a dialysis facility's patient care strategy would lead to improved patient outcome over time, as well as time-dynamic performance evaluation. Innovation. To date, there does not exist a feasible framework for estimation and dual inference (patient- and facility-level) in multilevel varying coefficient modeling (MVCM) that accommodates multilevel longitudinal data structures. Our work will be the first to study both patient- and facility-level inference in MVCM simultaneously and to flexibly model facility-level effects that span a spectrum of models, including facility (i)
fixed effects, (ii) constant random effects, and (iii) random effects functions of time (random coefficient functions). This will also be the first study to examine continuous dialysis facility performance assessment from initiation of dialysis and allow for identification of specific time periods for targeted patient outcome improvement. Aims. The proposed framework will be achieved through the following specific aims: 1) (Subject-level Inference) To develop and apply MVCM for multilevel longitudinal response (outcome) with general subject- level covariates and flexible modeling of facility-level effects; 2) (Facility-level Inference) To develop and apply MVCM for facility-level inference; 3) (MVCM Performance Characteristics) To characterize the operational characteristics of MVCM, including relative efficiency and sensitivity to modeling assumptions, across information sparsity levels and inferential goals.
描述(由适用提供):末期肾脏疾病与加速死亡率有关,心血管(CV)疾病是死亡的主要原因。与透析患者更有效护理的相关性是表征结果轨迹随着时间的流逝而发展并确定其相关风险因素的发展。从透析开始,阐明患者级危险因素(例如感染和设施级特征)对患者的CV结果等设施级别的特征(例如设施的患者护理人员组成)的时间变化的影响很重要。我们的长期目标是为识别可修改的指导提供指导
患者级别和设施级别的风险因素以及透析护理提供者质量改善的方法。为了实现这一目标,我们将开发一个一般框架,以对适合多层次数据结构的患者结局进行多层次时间范围建模的估计和推断(例如,嵌套在透析设施中或CARE提供者中嵌套的患者以及随时间嵌套在患者中的患者)。我们提出的对透析的CV事件风险因素和感染的时间动态影响的新型建模对于设计有效的疾病管理和预防方法非常重要,因为它允许识别出增加风险增加的特定时间段。此外,提出的框架与设施级决策有关,包括预测透析设施的患者护理策略的变化是否会随着时间的流逝而改善患者的结果,以及时间动态性绩效评估。创新。迄今为止,在多层次变化的核心建模(MVCM)中,还没有可行的框架来估算和双重推理(患者和设施级别),该框架可容纳多级纵向数据结构。我们的工作将是第一个简单地研究MVCM中患者和设施级别的推断的人,并灵活地建模设施级别的效果,这些效应涵盖了包括设施(I)在内的各种模型(包括设施)
固定效果,(ii)恒定随机效应和(iii)时间的随机效应函数(随机系数函数)。这也将是第一项研究透析启动透析设施绩效评估的第一项研究,并允许识别针对目标患者结果改善的特定时间段。目标。提出的框架将通过以下特定目的来实现:1)(主题级别的推断)开发和应用MVCM,以通过一般主题级别的协变量和设施级效应的灵活建模来开发和应用MVCM进行多层次纵向响应(结果); 2)(设施级别的推理)开发和应用MVCM进行设施级别的推断; 3)(MVCM性能特征)表征MVCM的操作特征,包括相对效率和对建模假设的敏感性,跨信息稀疏度和推论目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damla Senturk其他文献
Damla Senturk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damla Senturk', 18)}}的其他基金
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:
10596470 - 财政年份:2020
- 资助金额:
$ 33.93万 - 项目类别:
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:
10357949 - 财政年份:2020
- 资助金额:
$ 33.93万 - 项目类别:
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:
10158513 - 财政年份:2020
- 资助金额:
$ 33.93万 - 项目类别:
A unified longitudinal functional data framework for the analysis of complex biomedical data
用于分析复杂生物医学数据的统一纵向功能数据框架
- 批准号:
9118239 - 财政年份:2015
- 资助金额:
$ 33.93万 - 项目类别:
A unified longitudinal functional data framework for the analysis of complex biomedical data
用于分析复杂生物医学数据的统一纵向功能数据框架
- 批准号:
9301596 - 财政年份:2015
- 资助金额:
$ 33.93万 - 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:
8547059 - 财政年份:2011
- 资助金额:
$ 33.93万 - 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:
8330299 - 财政年份:2011
- 资助金额:
$ 33.93万 - 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:
8158712 - 财政年份:2011
- 资助金额:
$ 33.93万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
- 批准号:
10718346 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
AppalTRuST Community Outreach and Participant Engagement Core
AppalTRUST 社区外展和参与者参与核心
- 批准号:
10665325 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Appalachian Tobacco Regulatory Science Team (AppalTRuST)
阿巴拉契亚烟草监管科学团队 (AppalTRuST)
- 批准号:
10665319 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别: