A unified longitudinal functional data framework for the analysis of complex biomedical data
用于分析复杂生物医学数据的统一纵向功能数据框架
基本信息
- 批准号:9301596
- 负责人:
- 金额:$ 32.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBayesian AnalysisBig DataBiomedical EngineeringBrainCardiacCardiopulmonary ArrestCaringCerebrumCharacteristicsChildClassificationClinicalCollaborationsCommunitiesComplexComputerized Medical RecordDataData AnalysesData CollectionData ReportingData ScienceData SetDecision MakingDevelopmentDiagnosisDiscipline of NursingE-learningElectrocardiogramElectroencephalogramElementsEnvironmentEstimation TechniquesEventEvent-Related PotentialsEvidence Based MedicineEvolutionFoundationsFrequenciesGoalsHealthHealthcareImageIndividualIntensive Care UnitsInvestigationLiteratureMeasurementMeasuresMedicalMethodologyMethodsModelingMonitorNatureNeurologicNeurologyNursesPatient MonitoringPatientsPhysiologic MonitoringPhysiologicalProceduresProcessPropertyPsychiatryPublic Health Applications ResearchReadingRegression AnalysisResearchRunningSignal TransductionSolidSourceStatistical AlgorithmStatistical MethodsStatistical ModelsStructureSurvival AnalysisTechniquesTimeTraumatic Brain InjuryVariantVisitautism spectrum disorderbasecomputer sciencecomputerized toolsdensitydisorder subtypeevidence baseflexibilityfollow-upfunctional outcomeshigh dimensionalityindexinginformation frameworkinnovationlongitudinal analysisnovelpressureprospectivepublic health relevancestatisticstheoriestool
项目摘要
DESCRIPTION (provided by applicant): The continuous evolution in our ability to measure and record complex biomedical data has opened new opportunities, as well as new challenges in the development of evidence based medical care and health management. This application is concerned with complex patient level information, acquired in the form of high frequency functional data (ECG signals, cerebral environment monitors, images, etc.) recorded over several visits or in the setting of medium to long periods of intensive physiological monitoring (for example, Intensive Care Unit settings). We conceptually characterize this information framework as longitudinal functional data. This involves representation of these data classes, in relation to two time scales: historical time, indexing long term changes in the dynamic of processes under investigation, and clock time, indexing short term dynamics. This characterization achieves the goals of identifying sources of variation in the data that are readil interpretable for scientific investigation. We propose a comprehensive holistic development of the theory and methodology for the analysis of longitudinal functional data that span the subjects of regression, clustering and classification and dynamic computation. These developments will provide interpretation and rigorous inference to help guide health care decisions based on complex biomedical data. Even though longitudinal and functional data analysis have established solid bodies of theory and methods, current literature does not yet address analysis of longitudinal functional data with multiple covariates under flexible assumptions. In addition, most applications in the functional data analysis literature involve analysis of data in relatively short periods of time and methods are not directly applicable to medium to long periods of intensive physiological monitoring settings. We propose to analyze these larger scale data sets by the proposed novel longitudinal functional data framework involving chunking longer periods of follow-up into longitudinal units. This is a novel idea in thi literature which utilizes both longitudinal and functional data analysis tools to achieve data analysis in a new level of data complexity. A second element of innovation in our application will consist in the development of fast and accurate algorithms for statistical inference in real time, which will make our methodological contribution ever more useful for clinical and public health applications. We propose three Specific Aims: 1) To develop statistical methods for regression analysis and prediction in the setting of longitudinal functional data; 2) To develop clustering an classification methodology for longitudinal functional data; 3) To develop fast and feasible estimation techniques aimed at online learning in high dimensional settings. These three Aims are accompanied by a fourth exploratory Aim, where we propose to develop statistical methods for time to event analysis using longitudinal functional predictors. Applications for the proposed methodology will include Intensive Care Unit data on traumatic brain injury and cardiopulmonary arrest patients and ERP data in autism spectrum disorder studies.
DESCRIPTION (provided by applicant): The continuous evolution in our ability to measure and record complex biomedical data has opened new opportunities, as well as new challenges in the development of evidence based medical care and health management. This application is concerned with complex patient level information, acquired in the form of high frequency functional data (ECG signals, cerebral environment monitors, images, etc.) recorded over several visits or in the setting of medium to long periods of intensive physiological monitoring (for example, Intensive Care Unit settings). We conceptually characterize this information framework as longitudinal functional data. This involves representation of these data classes, in relation to two time scales: historical time, indexing long term changes in the dynamic of processes under investigation, and clock time, indexing short term dynamics. This characterization achieves the goals of identifying sources of variation in the data that are readil interpretable for scientific investigation. We propose a comprehensive holistic development of the theory and methodology for the analysis of longitudinal functional data that span the subjects of regression, clustering and classification and dynamic computation. These developments will provide interpretation and rigorous inference to help guide health care decisions based on complex biomedical data. Even though longitudinal and functional data analysis have established solid bodies of theory and methods, current literature does not yet address analysis of longitudinal functional data with multiple covariates under flexible assumptions. In addition, most applications in the functional data analysis literature involve analysis of data in relatively short periods of time and methods are not directly applicable to medium to long periods of intensive physiological monitoring settings. We propose to analyze these larger scale data sets by the proposed novel longitudinal functional data framework involving chunking longer periods of follow-up into longitudinal units. This is a novel idea in thi literature which utilizes both longitudinal and functional data analysis tools to achieve data analysis in a new level of data complexity. A second element of innovation in our application will consist in the development of fast and accurate algorithms for statistical inference in real time, which will make our methodological contribution ever more useful for clinical and public health applications. We propose three Specific Aims: 1) To develop statistical methods for regression analysis and prediction in the setting of longitudinal functional data; 2) To develop clustering an classification methodology for longitudinal functional data; 3) To develop fast and feasible estimation techniques aimed at online learning in high dimensional settings. These three Aims are accompanied by a fourth exploratory Aim, where we propose to develop statistical methods for time to event analysis using longitudinal functional predictors. Applications for the proposed methodology will include Intensive Care Unit data on traumatic brain injury and cardiopulmonary arrest patients and ERP data in autism spectrum disorder studies.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damla Senturk其他文献
Damla Senturk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damla Senturk', 18)}}的其他基金
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:
10596470 - 财政年份:2020
- 资助金额:
$ 32.04万 - 项目类别:
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:
10357949 - 财政年份:2020
- 资助金额:
$ 32.04万 - 项目类别:
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:
10158513 - 财政年份:2020
- 资助金额:
$ 32.04万 - 项目类别:
A unified longitudinal functional data framework for the analysis of complex biomedical data
用于分析复杂生物医学数据的统一纵向功能数据框架
- 批准号:
9118239 - 财政年份:2015
- 资助金额:
$ 32.04万 - 项目类别:
Modeling Time-Dynamic Multilevel Outcomes in Patients on Dialysis
透析患者的时间动态多层次结果建模
- 批准号:
9022362 - 财政年份:2011
- 资助金额:
$ 32.04万 - 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:
8547059 - 财政年份:2011
- 资助金额:
$ 32.04万 - 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:
8330299 - 财政年份:2011
- 资助金额:
$ 32.04万 - 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:
8158712 - 财政年份:2011
- 资助金额:
$ 32.04万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 32.04万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 32.04万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 32.04万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 32.04万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 32.04万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 32.04万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 32.04万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 32.04万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 32.04万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 32.04万 - 项目类别:
Standard Grant














{{item.name}}会员




