Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
基本信息
- 批准号:10357949
- 负责人:
- 金额:$ 35.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-06 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AgeBehavior TherapyBehavioralBiologicalBiological MarkersBrainBrain imagingBrain regionChildClinical TrialsCognitiveCommunicationCommunitiesComplexDataData AnalysesData ScienceDevelopmentDiagnosisDimensionsEffectivenessElectroencephalographyExhibitsExperimental DesignsFundingGoalsGrantHealthcareHeterogeneityImaging technologyImpaired cognitionImpairmentInfantIntervention TrialInvestigationJointsLeadLearningLifeLiteratureLongitudinal StudiesLongitudinal trendsMeasuresMedicalMethodologyModalityModelingModernizationMovementNatureNeurodevelopmental DeficitNeurodevelopmental DisorderPatientsPerformancePharmacologyPopulationProcessPublic HealthResearchSiblingsSocial InteractionStatistical Data InterpretationStatistical MethodsStructureTechniquesTimeUnited States National Institutes of HealthVisitautism spectrum disorderbasebehavioral impairmentbiobehaviorcognitive developmentcognitive processcomplex datadata modelingflexibilityhigh dimensionalityhigh riskimaging modalityindividuals with autism spectrum disorderinsightinstrumentinterestlongitudinal designmultimodal datamultimodalitynovelpredictive markersocialsocial attentionsocial communicationtrenduser friendly softwarevisual tracking
项目摘要
PROJECT SUMMARY
About 1 in 59 children are diagnosed with autism spectrum disorder (ASD), a
neurodevelopmental disorder characterized by impairments in social interaction and
communication. Our proposals in this grant are motivated by two studies on the two most
promising biobehavioral biomarker modalities of ASD, electroencephalography (EEG) and eye-
tracking (ET). Both studies collect data from serially administered EEG and ET tasks, over
multiple longitudinal visits. In addition, multiple tasks within or across modalities tap into similar
cognitive domains. Hence, even though joint analysis of these complex data structures across
tasks, modalities (EEG and ET) and longitudinal visits would lead to the most efficient use of the
available information, current analysis techniques are limited and are usually carried out on data
from one task at a time, within a modality. Therefore, we propose a comprehensive set of
statistical methods for the analysis of biobehavioral biomarker data in its entirety, borrowing
information from multiple tasks, across modalities and over longitudinal visits. Our proposal
relies on characterization of EEG and ET data as high-dimensional highly structured functional
objects. Different from existing multimodal brain imaging literature, which fuses data for brain-
region related inference, we combine a brain imaging modality (EEG) with a biobehavioral
marker (ET), based on information on tasks that are related to common cognitive domains. Our
unified framework strives to combine information across dimensions and experimental tasks to
provide meaningful ways of interpreting the gained information in lower dimensions. These
developments will provide the data science and biomedical community with novel instruments of
scientific investigation, including user friendly software, to assist medical and public health
decisions based on biobehavioral multimodal data.
Aims. We propose three specific aims: 1) (Task) To develop a feature allocation framework for
modeling the high-dimensional biobehavioral data across tasks within a modality; 2)
(Longitudinal) To extend the feature allocation modelling of Aim 1 to account for longitudinal
performance trends in the joint trajectories of data from multiple tasks of a biomarker within a
modality across longitudinal visits; 3) (Multimodal) To model the data in its entirety across
multimodal biomarkers. Proposals in each aim rely on dimension reduction through a feature
allocation framework in estimating a set of underlying low-dimensional cognitive domains.
Children are then clustered according to their loadings on multiple factors representing different
cognitive domains, contributing to the study of heterogeneity in ASD.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
Damla Senturk其他文献
Damla Senturk的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
{{ truncateString('Damla Senturk', 18)}}的其他基金
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:10596470 
- 财政年份:2020
- 资助金额:$ 35.17万 
- 项目类别:
Functional Data Analysis for High-Dimensional Biobehavioral Data
高维生物行为数据的功能数据分析
- 批准号:10158513 
- 财政年份:2020
- 资助金额:$ 35.17万 
- 项目类别:
A unified longitudinal functional data framework for the analysis of complex biomedical data
用于分析复杂生物医学数据的统一纵向功能数据框架
- 批准号:9118239 
- 财政年份:2015
- 资助金额:$ 35.17万 
- 项目类别:
A unified longitudinal functional data framework for the analysis of complex biomedical data
用于分析复杂生物医学数据的统一纵向功能数据框架
- 批准号:9301596 
- 财政年份:2015
- 资助金额:$ 35.17万 
- 项目类别:
Modeling Time-Dynamic Multilevel Outcomes in Patients on Dialysis
透析患者的时间动态多层次结果建模
- 批准号:9022362 
- 财政年份:2011
- 资助金额:$ 35.17万 
- 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:8547059 
- 财政年份:2011
- 资助金额:$ 35.17万 
- 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:8330299 
- 财政年份:2011
- 资助金额:$ 35.17万 
- 项目类别:
Effective semiparametric models for ultra-sparse, unsynchronized, imprecise data
针对超稀疏、不同步、不精确数据的有效半参数模型
- 批准号:8158712 
- 财政年份:2011
- 资助金额:$ 35.17万 
- 项目类别:
相似海外基金
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:480808 
- 财政年份:2023
- 资助金额:$ 35.17万 
- 项目类别:Miscellaneous Programs 
Function of cost bias and effect of cognitive behavior therapy on social anxiety in children and adolescents
成本偏差的作用及认知行为治疗对儿童青少年社交焦虑的影响
- 批准号:23K02970 
- 财政年份:2023
- 资助金额:$ 35.17万 
- 项目类别:Grant-in-Aid for Scientific Research (C) 
Combined Dialectical Behavior Therapy and Digital Cognitive Behavioral Therapy for Insomnia for Adolescents at High Risk for Suicide: A Pilot RCT
辩证行为疗法和数字认知行为疗法相结合治疗自杀高危青少年的失眠:一项试点随机对照试验
- 批准号:10643478 
- 财政年份:2023
- 资助金额:$ 35.17万 
- 项目类别:
A Randomized Clinical Trial Comparing Transdiagnostic Behavior Therapy to Disorder-Specific Psychotherapy in the Recovery of Veterans with Social Anxiety Disorder and Comorbid PTSD Symptomatology
一项随机临床试验,比较跨诊断行为疗法与特定障碍心理疗法在患有社交焦虑症和共病 PTSD 症状的退伍军人康复中的作用
- 批准号:10746930 
- 财政年份:2023
- 资助金额:$ 35.17万 
- 项目类别:
Reducing suicide risk among aging caregivers of persons with AD/ADRD: Adapting, implementing, and evaluating Dialectical Behavior Therapy skills training interventions.
降低 AD/ADRD 患者老年护理人员的自杀风险:调整、实施和评估辩证行为治疗技能培训干预措施。
- 批准号:10730708 
- 财政年份:2023
- 资助金额:$ 35.17万 
- 项目类别:
A Randomized control trial of behavior therapy of tics in Japan. Exploring the behavior model of tics.
日本抽动行为治疗的随机对照试验。
- 批准号:22K13840 
- 财政年份:2022
- 资助金额:$ 35.17万 
- 项目类别:Grant-in-Aid for Early-Career Scientists 
The Role of Behavior Therapy Combined with Buprenorphine for the Treatment of Opioid Use Disorder
行为疗法联合丁丙诺啡治疗阿片类药物使用障碍的作用
- 批准号:10440820 
- 财政年份:2022
- 资助金额:$ 35.17万 
- 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效
- 批准号:10429841 
- 财政年份:2022
- 资助金额:$ 35.17万 
- 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效
- 批准号:10656415 
- 财政年份:2022
- 资助金额:$ 35.17万 
- 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression - supplement
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效 - 补充
- 批准号:10794868 
- 财政年份:2022
- 资助金额:$ 35.17万 
- 项目类别:

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



