Area A: In-Depth Proteome Mapping of the Tumor Microenvironment with Single- Cell Resolution
A 区:单细胞分辨率的肿瘤微环境深度蛋白质组图谱
基本信息
- 批准号:9752092
- 负责人:
- 金额:$ 106.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
The development of effective therapies for cancer requires a deep molecular understanding of tumor
heterogeneity by advanced omics technologies with spatially resolved measurements. Unfortunately, there are
substantial gaps in existing capabilities in terms of sensitivity. For example, a minimum of many thousands of
cells is required for in-depth profiling of proteins in a biological sample. We have recently developed a
breakthrough technology, termed nanoPOTS (Nanodroplet Preparation in One pot for Trace Samples) which,
when coupled to ultrasensitive liquid chromatography-mass spectrometry (LC-MS), enables effective analysis of
as few as 10 mammalian cells with a coverage of >3000 identified proteins. We hypothesize that the nanoPOTS
platform will be an enabling technology to characterize the molecular underpinnings of tumor heterogeneity by
creating 3D proteome maps of human tumors. The overall objective of our study is to extend and validate this
analysis platform to enable single-cell resolution measurements at high throughput (>100 samples per day) and
apply the platform to create 3D proteome maps of human tumors. Studies in Aim 1 will focus on optimizing and
validating the ultrasensitive nanoPOTS proteomic workflow to enable robust proteome profiling of ≥3,000 protein
groups from single human cells obtained by both flow cytometry and laser capture microdissection (LCM). Aim
2 will evaluate and compare two complementary technologies for increasing measurement throughput to ~100
cells/day with minimal impact on proteome coverage. We will determine whether multiplexing through application
of isobaric labels for pooled analysis, or rapid LC coupled with ultrahigh resolution ion mobility spectrometry-MS
provides greatest coverage, quantitation and reproducibility for single cell proteomics at the desired throughput.
In Aim 3, we will apply the optimized platform to create in-depth proteome maps for human pancreatic ductal
adenocarcinomas (PDAs) at single cell resolution. Following initial targeted studies of specific cells of interest
within sectioned tissues, we will use a combination of cryosectioning, LCM and the optimized nanoPOTS
platform to analyze single cells within the tumor microenvironment. 3D reconstruction of these in-depth, spatially
resolved proteomic analyses will provide the first global proteomic tumor maps at single-cell resolution. This
project will not only establish an innovative measurement capability that will broadly advance cancer research,
but will also provide unique molecular insights into cellular heterogeneity relevant to PDA pathology. The
resulting platform will be disseminated through a combination of publication and commercialization.
项目总结/文摘
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell.
超敏感的单细胞蛋白质组学工作流识别每个哺乳动物细胞> 1000个蛋白质基团。
- DOI:10.1039/d0sc03636f
- 发表时间:2020-11-17
- 期刊:
- 影响因子:8.4
- 作者:Cong Y;Motamedchaboki K;Misal SA;Liang Y;Guise AJ;Truong T;Huguet R;Plowey ED;Zhu Y;Lopez-Ferrer D;Kelly RT
- 通讯作者:Kelly RT
Fully Automated Sample Processing and Analysis Workflow for Low-Input Proteome Profiling.
- DOI:10.1021/acs.analchem.0c04240
- 发表时间:2021-01-26
- 期刊:
- 影响因子:7.4
- 作者:Liang Y;Acor H;McCown MA;Nwosu AJ;Boekweg H;Axtell NB;Truong T;Cong Y;Payne SH;Kelly RT
- 通讯作者:Kelly RT
Improved Single-Cell Proteome Coverage Using Narrow-Bore Packed NanoLC Columns and Ultrasensitive Mass Spectrometry.
- DOI:10.1021/acs.analchem.9b04631
- 发表时间:2020-02-04
- 期刊:
- 影响因子:7.4
- 作者:Cong Y;Liang Y;Motamedchaboki K;Huguet R;Truong T;Zhao R;Shen Y;Lopez-Ferrer D;Zhu Y;Kelly RT
- 通讯作者:Kelly RT
In-Depth Mass Spectrometry-Based Proteomics of Formalin-Fixed, Paraffin-Embedded Tissues with a Spatial Resolution of 50-200 μm.
- DOI:10.1021/acs.jproteome.2c00409
- 发表时间:2022-09-02
- 期刊:
- 影响因子:4.4
- 作者:Nwosu, Andikan J.;Misal, Santosh A.;Thy Truong;Carson, Richard H.;Webber, Kei G., I;Axtell, Nathaniel B.;Liang, Yiran;Johnston, S. Madisyn;Virgin, Kenneth L.;Smith, Ethan G.;Thomas, George, V;Morgan, Terry;Price, John C.;Kelly, Ryan T.
- 通讯作者:Kelly, Ryan T.
Adapting a Low-Cost and Open-Source Commercial Pipetting Robot for Nanoliter Liquid Handling.
- DOI:10.1177/2472630320973591
- 发表时间:2021-06
- 期刊:
- 影响因子:2.7
- 作者:Councill EEAW;Axtell NB;Truong T;Liang Y;Aposhian AL;Webber KGI;Zhu Y;Cong Y;Carson RH;Kelly RT
- 通讯作者:Kelly RT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan T Kelly其他文献
Ryan T Kelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan T Kelly', 18)}}的其他基金
Advanced Sample Preparation, Separation and Multiplexed Analysis for In-Depth Proteome Profiling of >1000 Single Cells Per Day
先进的样品制备、分离和多重分析,每天对超过 1000 个单细胞进行深入的蛋白质组分析
- 批准号:
10642310 - 财政年份:2023
- 资助金额:
$ 106.96万 - 项目类别:
Fully automated and ultra-high-throughput platform for in-depth single-cell proteomics
用于深入单细胞蛋白质组学的全自动和超高通量平台
- 批准号:
10034850 - 财政年份:2020
- 资助金额:
$ 106.96万 - 项目类别:
Fully automated and ultra-high-throughput platform for in-depth single-cell proteomics
用于深入单细胞蛋白质组学的全自动和超高通量平台
- 批准号:
10796347 - 财政年份:2020
- 资助金额:
$ 106.96万 - 项目类别:
Fully automated and ultra-high-throughput platform for in-depth single-cell proteomics
用于深入单细胞蛋白质组学的全自动和超高通量平台
- 批准号:
10473767 - 财政年份:2020
- 资助金额:
$ 106.96万 - 项目类别:
Fully automated and ultra-high-throughput platform for in-depth single-cell proteomics
用于深入单细胞蛋白质组学的全自动和超高通量平台
- 批准号:
10683998 - 财政年份:2020
- 资助金额:
$ 106.96万 - 项目类别:
Fully automated and ultra-high-throughput platform for in-depth single-cell proteomics
用于深入单细胞蛋白质组学的全自动和超高通量平台
- 批准号:
10255516 - 财政年份:2020
- 资助金额:
$ 106.96万 - 项目类别:
High-throughput multidimensional bioseparations for next-generation proteomics
下一代蛋白质组学的高通量多维生物分离
- 批准号:
9181330 - 财政年份:2016
- 资助金额:
$ 106.96万 - 项目类别:
Automated processing and manipulation of small samples for high throughput and ultrasensitive functional proteomics measurements
自动处理和操作小样品,以实现高通量和超灵敏的功能蛋白质组学测量
- 批准号:
10461818 - 财政年份:2003
- 资助金额:
$ 106.96万 - 项目类别:
Automated processing and manipulation of small samples for high throughput and ultrasensitive functional proteomics measurements
自动处理和操作小样品,以实现高通量和超灵敏的功能蛋白质组学测量
- 批准号:
10220049 - 财政年份:2003
- 资助金额:
$ 106.96万 - 项目类别:
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 106.96万 - 项目类别:
Standard Grant
Neural mechanism of the luminance contrast effect on perceived depth from disparity
亮度对比度对视差感知深度影响的神经机制
- 批准号:
24K16880 - 财政年份:2024
- 资助金额:
$ 106.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
In-depth Investigation of Lithium Dendrite Formation Processes
深入研究锂枝晶形成过程
- 批准号:
DE240101090 - 财政年份:2024
- 资助金额:
$ 106.96万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 106.96万 - 项目类别:
Continuing Grant
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
- 批准号:
2418485 - 财政年份:2024
- 资助金额:
$ 106.96万 - 项目类别:
Standard Grant
実レンズの非理想性補正に基づく高精度Depth from Defocus法の実現
基于真实镜头非理想校正的散焦法高精度景深实现
- 批准号:
24K15008 - 财政年份:2024
- 资助金额:
$ 106.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Structural Reinforcement to Optimize the Axial Tension of Rigid Riser in Water Depth Below 4,000m
4000m以下水深刚性立管轴拉力优化的结构加固研究
- 批准号:
23K04265 - 财政年份:2023
- 资助金额:
$ 106.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 106.96万 - 项目类别:
Standard Grant
In depth characterisation of the gamma delta T cell immune synapse
γδT 细胞免疫突触的深入表征
- 批准号:
DP230102073 - 财政年份:2023
- 资助金额:
$ 106.96万 - 项目类别:
Discovery Projects
Emergent Behavior in a Dish: Discovery of Bi-directional Spiraling as a Population Phenomenon in C. elegans Enables In-Depth Dissection of Mechanisms Underlying Group Behaviors
培养皿中的突现行为:发现秀丽隐杆线虫中的双向螺旋种群现象,有助于深入剖析群体行为背后的机制
- 批准号:
10724212 - 财政年份:2023
- 资助金额:
$ 106.96万 - 项目类别: