PREDICTIVE MODELING IN LUNG CANCER
肺癌的预测模型
基本信息
- 批准号:9121525
- 负责人:
- 金额:$ 15.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvant TherapyAftercareCancer EtiologyCancer PatientCessation of lifeCharacteristicsClinicClinicalClinical ResearchCombined Modality TherapyCommunicationCost Effectiveness AnalysisDataDatabasesDecision AnalysisDecision ModelingDiagnosisDiseaseDisease-Free SurvivalEffectivenessElectronicsFoundationsGenetic studyGoalsGoldHealthInterventionLearningLifeMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of thoraxMaster of ScienceMedicareMemorial Sloan-Kettering Cancer CenterMethodologyMethodsModalityModelingNon-Small-Cell Lung CarcinomaOperative Surgical ProceduresOutcomeParticipantPatient CarePatientsPerformance StatusPoliciesPolicy MakerPostdoctoral FellowProviderPublicationsRadiation therapyResearchResearch DesignResearch PersonnelResearch TrainingRiskSample SizeSocietiesStagingTestingThoracic OncologyTrainingTraining SupportTreatment CostTreatment outcomeUnited StatesUniversitiesValidationWashingtonabstractingcareercareer developmentchemoradiationclinical careclinical investigationcostcost effectivecost effectivenessdesigneconomic impactexperiencehealth care deliveryhealth economicshigh riskimproved outcomemarkov modelmedical schoolsmortalityoncologyoperationoutcome forecastpatient subsetspredictive modelingprognostic valueprogramsprospectiveresponsible research conductskillsstatisticssurvival predictiontooltumoruser-friendlyweb site
项目摘要
DESCRIPTION (provided by applicant): An estimated 201,000 new cases of lung cancer will be diagnosed in the United States in 2012. Lung cancer, the most common cause of cancer-related mortality, causes nearly 150,000 deaths annually. It is estimated that the costs of taking care of patients with lung cancer exceed $40 billion annually. Despite the tremendous impact of lung cancer on society, there are no reliable, clinically applicable methods to predict post-treatment outcomes in lung cancer patients. It has been shown that survival after diagnosis of lung cancer depends on both patient and tumor characteristics. Type of treatment or operation also impacts survival. Previous attempts at creating predictive models for survival after treatment for lung cancer have been severely limited by lack of detailed patient information, methodologic issues, and lack of validation. This career development proposal is designed to provide training and support for the applicant to become an independent clinical researcher focused on evaluating and modeling outcomes in thoracic oncology. The career development goals of this proposal are; 1. Obtain didactic training for a strong foundation in responsible conduct of research, research design, statistics, modeling methodology, decision analysis, and communication of risk to patients and providers. 2. Develop expertise in creating predictive models to assess competing therapies for common thoracic cancers and performing cost-effectiveness analyses. 3. Develop the skills necessary to communicate and disseminate results of the studies, implement research findings in practice, and influence change in policy and healthcare delivery to improve outcomes. The short-term career development goals will be accomplished by completing a Master of Science in Clinical Investigation degree at Washington University. To develop the practical skill set, the applicant will utilize decision analytic modelig to evaluate and predict long-term survival after surgery or radiation therapy for patients with early-stage lung cancer. Similar methods will be used to study the effectiveness and cost- effectiveness of treatment options for locally advanced lung cancer. The clinical objective is to develop and disseminate tools that can predict survival after treatment for lung cancer and to evaluate the cost-effectiveness of treatment options. The models will be made available to clinicians and the public on the Washington University website via an electronic, user-friendly interface. The models will support investigators seeking to assess prognosis for patients. Our results will also serve as baseline for assessing the value of new and emerging tests like genetic studies, which could be compared to and incorporated into the models. The career objective of the proposal is to develop the candidate into an independent investigator, who can implement modeling approaches to assess the impact of interventions on clinical care in oncology.
描述(申请人提供):2012年,美国估计将有201,000例新的肺癌病例被诊断出来。肺癌是癌症相关死亡的最常见原因,每年导致近15万人死亡。据估计,每年照顾肺癌患者的费用超过400亿美元。尽管肺癌对社会产生了巨大的影响,但目前还没有可靠的、临床适用的方法来预测肺癌患者的治疗后结果。已有研究表明,肺癌确诊后的存活率取决于患者和肿瘤的特征。治疗或手术的类型也影响生存。由于缺乏详细的患者信息、方法学问题和缺乏验证,先前建立肺癌治疗后生存预测模型的尝试受到严重限制。这项职业发展提案旨在为申请者提供培训和支持,使其成为一名独立的临床研究人员,专注于评估和模拟胸部肿瘤学的结果。这项建议的职业发展目标是:1.获得教学培训,为负责任地进行研究、研究设计、统计、建模方法、决策分析以及与患者和提供者沟通风险奠定坚实的基础。2.在创建预测模型以评估常见胸癌的竞争疗法和进行成本效益分析方面发展专业知识。3.培养必要的技能,以交流和传播研究结果,将研究结果付诸实践,并影响政策和医疗保健提供的变化,以改善结果。短期的职业发展目标将通过在华盛顿大学完成临床调查理学硕士学位来实现。为了发展实践技能,申请者将利用决策分析模型来评估和预测早期肺癌患者手术或放射治疗后的长期生存。类似的方法将用于研究局部晚期肺癌治疗方案的有效性和成本效益。临床目标是开发和传播能够预测肺癌治疗后生存率的工具,并评估治疗方案的成本效益。这些模型将通过电子的、用户友好的界面在华盛顿大学的网站上向临床医生和公众提供。这些模型将支持寻求评估患者预后的调查人员。我们的结果也将作为评估新的和新兴的测试(如基因研究)的价值的基线,这些测试可以与模型进行比较并纳入其中。该提案的职业目标是将候选人发展成为一名独立的调查员,他可以实施建模方法来评估干预措施对肿瘤学临床护理的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Varun Puri其他文献
Varun Puri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Varun Puri', 18)}}的其他基金
Optimizing Donor Management in Lung Transplantation
优化肺移植供体管理
- 批准号:
10153871 - 财政年份:2020
- 资助金额:
$ 15.82万 - 项目类别:
Optimizing Donor Management in Lung Transplantation
优化肺移植供体管理
- 批准号:
10431804 - 财政年份:2020
- 资助金额:
$ 15.82万 - 项目类别:
Optimizing Donor Management in Lung Transplantation
优化肺移植供体管理
- 批准号:
10646380 - 财政年份:2020
- 资助金额:
$ 15.82万 - 项目类别:
相似海外基金
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 15.82万 - 项目类别:
The ESCAPE clinical trial of circulating tumor DNA to guide adjuvant therapy in chemo-resistant triple negative breast cancer
循环肿瘤 DNA 指导化疗耐药三阴性乳腺癌辅助治疗的 ESCAPE 临床试验
- 批准号:
494901 - 财政年份:2023
- 资助金额:
$ 15.82万 - 项目类别:
Operating Grants
A Type I Hybrid Effectiveness-Implementation Trial to Evaluate a Navigation-Based Multilevel Intervention to Decrease Delays Starting Adjuvant Therapy Among Patients with Head and Neck Cancer
一项 I 型混合有效性实施试验,用于评估基于导航的多级干预措施,以减少头颈癌患者开始辅助治疗的延迟
- 批准号:
10714537 - 财政年份:2023
- 资助金额:
$ 15.82万 - 项目类别:
Multi-modal machine learning to guide adjuvant therapy in surgically resectable colorectal cancer
多模式机器学习指导可手术切除结直肠癌的辅助治疗
- 批准号:
10588103 - 财政年份:2023
- 资助金额:
$ 15.82万 - 项目类别:
Efficacy of ethanol adjuvant therapy after resection of malignant soft tissue tumors
恶性软组织肿瘤切除术后乙醇辅助治疗的疗效
- 批准号:
22K09407 - 财政年份:2022
- 资助金额:
$ 15.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of immune response cells and development of novel adjuvant therapy for sublingual immunotherapy
免疫应答细胞的鉴定和舌下免疫治疗新型辅助疗法的开发
- 批准号:
21KK0287 - 财政年份:2022
- 资助金额:
$ 15.82万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Pursuing molecular biomarkers to guide adjuvant therapy for HPV+ head and neck cancers after transoral robotic surgery
寻找分子生物标志物来指导经口机器人手术后 HPV 头颈癌的辅助治疗
- 批准号:
10357120 - 财政年份:2022
- 资助金额:
$ 15.82万 - 项目类别:
Biomarker research using two prospective studies on preoperative and postoperative adjuvant therapy for pancreatic cancer
使用两项关于胰腺癌术前和术后辅助治疗的前瞻性研究进行生物标志物研究
- 批准号:
21K08700 - 财政年份:2021
- 资助金额:
$ 15.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Personalized Resistant Starch as an Adjuvant Therapy for Pediatric Inflammatory Bowel Disease
个性化抗性淀粉作为小儿炎症性肠病的辅助治疗
- 批准号:
437315 - 财政年份:2020
- 资助金额:
$ 15.82万 - 项目类别:
Studentship Programs
Tailored adjuvant therapy in POLE-mutated and p53-wildtype early stage endometrial cancer (TAPER)
POLE 突变和 p53 野生型早期子宫内膜癌 (TAPER) 的定制辅助治疗
- 批准号:
435603 - 财政年份:2020
- 资助金额:
$ 15.82万 - 项目类别:
Operating Grants