Regulation of ischemic limb vascularization by glutaredoxin-1
谷氧还蛋白-1对缺血肢体血管化的调节
基本信息
- 批准号:9277579
- 负责人:
- 金额:$ 41.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Angiogenic FactorBlood VesselsBlood flowComplications of Diabetes MellitusCreatine KinaseDataDependovirusDiabetes MellitusDiabetic AngiopathiesDiabetic mouseDietDown-RegulationDoxycyclineEnzymesFatty acid glycerol estersGene DeletionGenesGlucoseGlutathioneGrx1 proteinHindlimbHypoxiaImpairmentInjectableIschemiaKnock-outKnockout MiceLigationLimb structureMetabolic DiseasesMusMuscleMuscle CellsMuscle FibersOutcomeOxidantsOxidation-ReductionOxygenPhysiologicalPost-Translational Protein ProcessingProductionProteinsRecoveryRegulationReportingResponse ElementsRoleSKIL geneSignal TransductionSkeletal MuscleSucroseSulfhydryl CompoundsTestingTetanus Helper PeptideTetracyclinesTherapeuticTransgenic MiceUp-RegulationVascular Endothelial Growth FactorsVascularizationadductangiogenesisdiabeticfemoral arteryglutaredoxinhypoxia inducible factor 1improvedin vivoinsightknock-downoverexpressionpreventpromoterprotein functionsmall hairpin RNAtherapeutic target
项目摘要
Critical limb ischemia is one of the major complications of diabetes and impairment of ischemic
revascularization by metabolic disorders is still poorly understood. Elevated oxidants may be
deleterious, but growing evidence supports the notion that physiological levels of oxidants are essential
to promote ischemic angiogenesis. Protein thiols react with oxidants and cellular glutathione (GSH)
forms stable protein GSH adducts (or S-glutathionylation) that alter protein function. GSH adducts are
reversed by a cytosolic enzyme, glutaredoxin-1 (Glrx), which may be increased in diabetes. Glrx
modulates redox signaling by reducing GSH adducts. We found that Glrx overexpressing transgenic
mice have impaired blood flow recovery after femoral artery ligation (Murdoch 2014). In contrast, our
new studies indicate that Glrx knockout (KO) mice have improved blood flow recovery after hindlimb
ischemia in association with increased GSH adducts and higher protein levels of HIF-1and VEGF in
ischemic muscles. HIF-1 activity is usually regulated at the protein level, and S-nitrosylation (R-SNO)
at Cys533 in the oxygen-dependent degradation domain is reported to stabilize HIF-1 by preventing
degradation. R-SNO reacts with abundant GSH to form the more stable GSH adduct (R-SSG) which
would be regulated by Glrx. Our studies indicate that in Glrx KO mice HIF-1-GSH adducts increase
resulting in stabilization and activation of HIF-1 which can increase VEGF production in
ischemic limbs. C2C12 muscle cells show that Glrx knockdown induces HIF-1protein and
increasesexpression of angiogenic factors including VEGF as well as PGC-1which also induces
VEGF and muscle angiogenesis. My hypothesis is that Glrx in skeletal muscle orchestrates anti-
angiogenic function, while inhibiting Glrx increases GSH adducts and promotes ischemic limb
revascularization in part through increasing HIF-1 and angiogenic factors in muscle. Since diabetes
is associated with impaired HIF-1 stability and lower levels of PGC-1, inhibition of Glrx could increase
HIF-1 and/or PGC-1 levels and improve limb vascularization in diabetes.
I will examine Glrx regulation on angiogenic factors in skeletal muscle cells (aim 1), study the effects of
muscle-specific Glrx overexpression in vivo on ischemic limb revascularization (aim 2), and the effects
of Glrx gene deletion or inhibition by adeno-associated virus delivery of shRNA on ischemic limb
revascularization in diet-induced diabetic mice (aim 3). These studies will elucidate the beneficial and
mechanistic role of reversible GSH adducts in ischemic muscle angiogenesis, and provide a potential
therapeutic target for ischemic limbs in diabetes.
严重肢体缺血是糖尿病的主要并发症之一,
对代谢紊乱引起的血管重建仍然知之甚少。氧化剂的升高可能是
有害的,但越来越多的证据支持的概念,生理水平的氧化剂是必不可少的
以促进缺血性血管生成。蛋白质硫醇与氧化剂和细胞谷胱甘肽(GSH)反应
形成稳定的蛋白质GSH加合物(或S-谷胱甘肽化),改变蛋白质功能。谷胱甘肽加合物是
由胞质酶谷氧还蛋白-1(Glutaredoxin-1,Glutaredoxin-1,Glutaredoxin-1)逆转,Glutaredoxin-1在糖尿病中可能增加。格莱什
通过减少GSH加合物来调节氧化还原信号。我们发现Glycoprotein过表达的转基因
小鼠在股动脉结扎后血流恢复受损(Murdoch 2014)。相比之下,我们
新的研究表明,Glycoprotein敲除(KO)小鼠在后肢损伤后改善了血流恢复。
缺血与GSH加合物增加和HIF-1受体和VEGF蛋白水平升高相关,
缺血性肌肉HIF-1 α的活性通常在蛋白质水平调节,S-亚硝基化(R-SNO)
据报道,氧依赖性降解结构域中的Cys 533处通过阻止HIF-1 α的表达来稳定HIF-1 α。
降解R-SNO与丰富的GSH反应形成更稳定的GSH加合物(R-SSG),
将由Glass监管。我们的研究表明,在Glyphoid KO小鼠中,HIF-1 α-GSH加合物增加,
导致HIF-1 α的稳定和活化,这可以增加VEGF的产生,
肢体缺血C2 C12肌细胞显示Glycine敲低诱导HIF-1受体蛋白,
增加血管生成因子包括VEGF和PGC-1的表达,
VEGF和肌肉血管生成。我的假设是骨骼肌中的谷胱甘肽协调了抗-
血管生成功能,同时抑制Glycine增加GSH加合物,促进缺血肢体
部分通过增加肌肉中的HIF-1 α和血管生成因子来实现血管重建。由于糖尿病
与HIF-1 β稳定性受损和PGC-1 β水平降低相关,Gly的抑制可增加
HIF-1 α和/或PGC-1 β水平并改善糖尿病患者的肢体血管形成。
我将研究Glycoprotein对骨骼肌细胞中血管生成因子的调节(目的1),研究Glycoprotein对骨骼肌细胞中血管生成因子的影响。
体内肌肉特异性Glycine过表达对缺血性肢体血管重建的影响(目的2),
腺相关病毒介导的shRNA对缺血肢体Gly蛋白基因缺失或抑制的影响
在饮食诱导的糖尿病小鼠中进行血管再生(aim 3)。这些研究将阐明有益的和
可逆GSH加合物在缺血性肌肉血管生成中的机制作用,并提供了一个潜在的
糖尿病肢体缺血的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reiko Matsui其他文献
Reiko Matsui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reiko Matsui', 18)}}的其他基金
Regulation of ischemic vascularization by glutaredoxin-1 by aging
谷氧还蛋白-1通过衰老调节缺血性血管形成
- 批准号:
9480179 - 财政年份:2016
- 资助金额:
$ 41.13万 - 项目类别:
Regulation of ischemic vascularization by glutaredoxin-1 by aging
谷氧还蛋白-1通过衰老调节缺血性血管形成
- 批准号:
9323226 - 财政年份:2016
- 资助金额:
$ 41.13万 - 项目类别:
PROTEIN MODIFICATION BY NITRATION IN AGING RATS
衰老大鼠中蛋白质的硝化修饰
- 批准号:
6287935 - 财政年份:2001
- 资助金额:
$ 41.13万 - 项目类别:
相似海外基金
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
All-in-One Smart Artificial Blood Vessels
一体化智能人造血管
- 批准号:
EP/X027171/2 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Fellowship
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
- 批准号:
23H02991 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ealization of navigation surgery by automatic recognition of stomach and surrounding blood vessels using artificial intelligence
利用人工智能自动识别胃及周围血管,实现导航手术
- 批准号:
23K07176 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
- 批准号:
23H00551 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Creation of a technique for visualization of stress concentration in blood and blood vessels by combined measurement of photoelasticity and ultrasonic Doppler velocimetry
通过光弹性和超声多普勒测速的组合测量,创建了一种可视化血管中应力集中的技术
- 批准号:
23H01343 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels
剪切应力激活合成细胞用于狭窄血管中的靶向药物释放
- 批准号:
10749217 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
- 批准号:
23H01827 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
- 批准号:
22K21006 - 财政年份:2022
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




