The role of inositol in Cryptococcus biology and pathogenesis
肌醇在隐球菌生物学和发病机制中的作用
基本信息
- 批准号:9239514
- 负责人:
- 金额:$ 57.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-11-24 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAlpha CellAnimal ModelAstrocytesAttenuatedBindingBiologicalBiological AssayBiological ModelsBiologyBloodBlood - brain barrier anatomyBrainCatabolismCell surfaceCellsCellular StructuresCentral Nervous System InfectionsCessation of lifeChemotactic FactorsComplexCryptococcal MeningitisCryptococcusCryptococcus neoformansCryptococcus neoformans infectionDevelopmentDiseaseEnvironmentExhibitsExtravasationFungal MeningitisGene Expression RegulationGenetic TranscriptionGoalsGroup StructureGrowthHumanHyaluronic AcidImmune EvasionImmune responseImmunityImmunocompromised HostIn VitroInfectionInositolInositol Metabolism PathwayKnowledgeLifeLigandsMediatingMedicalMeningitisMetabolic PathwayMetabolismMissionModelingModificationMolecularMusMutagenesisNeuraxisNeurotropismNutrientOryctolagus cuniculusPathogenesisPathway interactionsPatientsPenetrationPhospholipidsPlantsPlayPolysaccharidesProcessProductionRNARoleSignal TransductionSignaling MoleculeSourceStructureSurfaceSystemTestingTight JunctionsTimeUnited States National Institutes of HealthVirulenceVirulence Factorsbasecapsuledisorder controldisorder preventionfungusimaging approachin vitro Modelin vivoin vivo Modelinsightmonolayermouse modelmutantnovelpathogenreceptortranscription factoruptakewhole animal imaging
项目摘要
Cryptococcus neoformans is a deadly fungal pathogen that exhibits pronounced neurotropism: it is the most
common cause of fungal meningitis, particularly in immunocompromised patients, resulting in over 620,000
deaths annually. How C. neoformans cells traverse the blood-brain barrier (BBB) to infect the central nervous
system (CNS) remains poorly understood. Our recent studies implicate inositol – one of the most abundant
metabolites in the brain – in this process. In particular, we find that growth of C. neoformans under inositol-rich
conditions enhances fungal virulence and that fungal mutants defective in inositol uptake exhibit reduced
virulence, reduced capacity to transmigrate from the blood into the brain, and reduced ability to traverse a
model BBB in vitro. We also find that C. neoformans compromises tight-junction integrity in vitro, promoting
inositol leakage through the brain microvascular endothelial monolayer. Furthermore, we show that inositol
induces the expression of fungal cell surface factors involved in virulence, including the polysaccharide
capsule, a major fungal virulence factor, and hyaluronic acid (HA), a ligand important for fungal binding to the
BBB. Finally, we find that growth on inositol promotes the production of capsule structures involved in immune
evasion and that, conversely, C. neoformans mutants defective in inositol uptake elicit enhanced protective
immunity during brain infection. Based on these results, we hypothesize that C. neoformans senses and
utilizes host inositol to modify the fungal cell surface in a way that promotes penetration of the BBB and
development of cryptococcal meningitis. Interestingly, C. neoformans contains an unusually complex inositol
uptake system and catabolic pathway, which likely evolved from its utilization of the inositol stores of its plant
reservoirs. Thus, this fungus may be uniquely adapted to thrive in the inositol-rich environment of the CNS and
to utilize inositol-dependent pathways for pathogenesis. The overarching goal of this proposal is to obtain a
detailed understanding of the mechanism by which C. neoformans acquires and utilizes host inositol to
establish human brain infection. We propose three Specific Aims: 1) Define inositol sensing and metabolic
pathways required for modifying fungal cell surface structure by using a combination of fungal mutagenesis
analysis, enzymatic assays, and polysaccharide structural analysis; 2) Characterize the mechanism of inositol-
mediated promotion of C. neoformans BBB crossing and CNS infection by using an in vitro BBB model system
and in vivo animal models; and 3) Define the transcriptional circuits regulating inositol-dependent processes
during cryptococcal brain infection by analyzing the expression and localization of fungal inositol factors and
identifying transcription factors regulating their expression during infection. Together, these studies will
elucidate a novel contribution of a brain metabolite, inositol, to the development of life-threatening fungal
meningitis. As such, these studies promise to provide substantial insight into mechanisms by which pathogens
cross the BBB and establish CNS infections.
新生隐球菌是一种致命的真菌病原体,表现出明显的神经趋向性:它是
真菌脑膜炎的常见原因,特别是在免疫功能低下的患者中,导致超过620,000人
每年的死亡人数。新生芽孢杆菌细胞如何穿越血脑屏障感染中枢神经系统
对中枢神经系统(CNS)仍知之甚少。我们最近的研究涉及肌醇--最丰富的
大脑中的代谢物--在这个过程中。特别是,我们发现新生隐孢子虫在富含肌醇的环境中生长
条件增强真菌毒力,摄取肌醇缺陷的真菌突变体表现出减少
毒性,从血液转移到大脑的能力降低,以及穿越
体外模拟血脑屏障。我们还发现,新生葡萄球菌在体外损害了紧密连接的完整性,促进了
肌醇通过脑微血管内皮细胞单层渗漏。此外,我们还证明了肌醇
诱导参与毒力的真菌细胞表面因子的表达,包括多糖
衣壳,一个主要的真菌毒力因子,和透明质酸(HA),一个重要的配体,真菌结合到
BBB。最后,我们发现,肌醇的生长促进了与免疫有关的胶囊结构的产生。
回避和相反,摄取肌醇缺陷的新生葡萄球菌突变株可诱导增强保护作用
脑部感染时的免疫力。根据这些结果,我们假设新生隐孢子虫感觉和
利用宿主肌醇来修饰真菌细胞表面,以促进BBB的穿透和
隐球菌性脑膜炎的发展。有趣的是,新生葡萄球菌含有一种异常复杂的肌醇。
摄取系统和分解代谢途径,可能是由于其对植物肌醇储备的利用而演变的
水库。因此,这种真菌可能独特地适应在富含肌醇的中枢神经系统和
利用肌醇依赖途径在发病机制中的应用。这项提议的首要目标是获得一个
详细了解新生隐孢子菌获取和利用宿主肌醇的机制
确定人脑感染。我们提出了三个具体目标:1)定义肌醇感觉和代谢
利用真菌诱变组合改变真菌细胞表面结构所需的途径
分析、酶分析和多糖结构分析;2)对肌醇的作用机理进行表征。
利用体外BBB模型系统介导新生隐孢子虫BBB交叉和中枢神经系统感染
和活体动物模型;以及3)定义调节肌醇依赖过程的转录电路
通过分析隐球菌脑感染过程中真菌肌醇因子和蛋白的表达定位
确定在感染过程中调节其表达的转录因子。总而言之,这些研究将
阐明脑部代谢物肌醇对威胁生命的真菌的发展的新贡献
脑膜炎。因此,这些研究有望提供对病原体致病机制的实质性见解
越过血脑屏障,确定中枢神经系统感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chaoyang Xue其他文献
Chaoyang Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chaoyang Xue', 18)}}的其他基金
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10654524 - 财政年份:2022
- 资助金额:
$ 57.46万 - 项目类别:
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10389392 - 财政年份:2022
- 资助金额:
$ 57.46万 - 项目类别:
Lipid flippase in echinocandin drug resistance in Cryptococcus neoformans
脂质翻转酶在新型隐球菌棘白菌素耐药性中的作用
- 批准号:
10170266 - 财政年份:2020
- 资助金额:
$ 57.46万 - 项目类别:
The role of inositol in Cryptococcus biology and pathogenesis
肌醇在隐球菌生物学和发病机制中的作用
- 批准号:
9903576 - 财政年份:2016
- 资助金额:
$ 57.46万 - 项目类别:
The role of inositol in Cryptococcus biology and pathogenesis
肌醇在隐球菌生物学和发病机制中的作用
- 批准号:
10054979 - 财政年份:2016
- 资助金额:
$ 57.46万 - 项目类别:
Regulation of ubiquitin-proteasome in Cryptococcus pathogenesis
泛素蛋白酶体在隐球菌发病机制中的调控
- 批准号:
8969923 - 财政年份:2015
- 资助金额:
$ 57.46万 - 项目类别:
Mechanism of GPCR Signaling-mediated Fungal Cell Gigantism
GPCR信号介导真菌细胞巨型化的机制
- 批准号:
8765500 - 财政年份:2014
- 资助金额:
$ 57.46万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 57.46万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 57.46万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 57.46万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 57.46万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 57.46万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 57.46万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 57.46万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 57.46万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 57.46万 - 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
- 批准号:
10376866 - 财政年份:2020
- 资助金额:
$ 57.46万 - 项目类别:














{{item.name}}会员




