ER Stress and Protein Dynamics in Cardiac Remodeling
心脏重塑中的内质网应激和蛋白质动力学
基本信息
- 批准号:9205257
- 负责人:
- 金额:$ 12.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-15 至 2017-04-29
- 项目状态:已结题
- 来源:
- 关键词:ATF6 geneAlpha CellAminationAminesBiological AssayCardiacCardiac MyocytesCause of DeathCell Culture TechniquesCell Surface ReceptorsCellsClinicalDataDevelopmentDiseaseEndoplasmic ReticulumEnvironmentFacultyFunctional disorderFundingGeneticGlycoproteinsGoalsHealthHeartHeart DiseasesHeart failureHeat shock proteinsHomeostasisHumanHypertrophyImpairmentIn VitroIsoproterenolKnowledgeLabelMeasuresMembraneMembrane GlycoproteinsMembrane ProteinsMetabolicMethodsMindModelingMolecularMorbidity - disease rateMuscle CellsMyocardiumNRP1 geneNamesNeuropilin-1PathogenesisPathogenicityPathologicPathway interactionsPharmacologyPhasePhysiologicalProcessProfessional CompetenceProtein BiosynthesisProtein DynamicsProtein GlycosylationProteinsProteomeProteomicsResearchResolutionRodentRoleSamplingSarcolemmaSarcoplasmic ReticulumSignal PathwaySignal TransductionSiteStructureTechniquesTechnologyTestingTrainingXBP1 genebasebiological adaptation to stressclinically relevanteffective therapyendoplasmic reticulum stressexperimental studyglycoproteomicsglycosylationin vivoin vivo Modelinsightmortalitymouse modelnew technologynew therapeutic targetnovelprotein degradationprotein expressionprotein functionproteostasisreceptorresponsetranslational studyvirtual
项目摘要
DESCRIPTION (provided by applicant): Heart failure is a leading cause of morbidity and mortality worldwide. The search for effective treatments hinges upon understanding the molecular underpinnings of the adverse hypertrophy and remodeling that precipitates cardiac failure. Recent research implicates endoplasmic reticulum (ER) stress as a virtually universal feature of heart diseases, but detailed mechanisms of how ER stress contributes to maladaptive cardiac remodeling are currently lacking. My colleagues and I recently developed a novel technological platform and used it to discover that cardiac remodeling amid ER stress is associated with widespread disruption in protein turnover dynamics, including importantly a cluster of ER-associated glycoproteins with aberrant proteostasis. Within the cluster, cardiac remodeling in particular severely disrupts the dynamics and glycosylation of neuropilin-1 (NRP1), a cell surface glycoprotein that is thought to be salubrious to the failing heart. These observations endorse my postulate that ER stress contributes to maladaptive remodeling via effecting aberrant cardiac protein homeostasis and glycosylation. Hence, the goal of the current proposal is to define the molecular consequences of ER stress in the myocardium by investigating three proteostasis parameters - protein expression, turnover dynamic and glycosylation - amid ER stress and cardiac remodeling. The short-term (K99) aims are to (1) understand how ER stress impacts the expression and dynamics of ER-associated proteins in mouse models, and (2) characterize the impact of protein dynamics and glycosylation on cardiac NRP1 protein interactions in health and in disease. These studies are a logical extension of my current research, and will give me opportunities to train in rodent and cell culture models of ER stress and cardiac remodeling, as well as translational studies of clinical human heart failure samples. With this development in mind, my long-term (R00) aims are to (3) investigate how protein glycosylation remodels in the cardiac proteome at large, using a combination of in vitro and in vivo models I will have trained in during my K99 phase, and (4) investigate how protein glycosylation impacts the physiological role of NRP1 signaling in the failing heart. The propose studies will be the first to systemically examine how ER stress impacts the essential ER functions of protein turnover and glycosylation as a pathogenic mechanism, and will thereby lend insights to our understanding of adverse remodeling. Altogether, the training plan and supportive institutional environment at UCLA will equip me with the experimental and career skills to ask a wide range of questions regarding ER stress and hypertrophy as an independent tenured faculty.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maggie Lam其他文献
Maggie Lam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maggie Lam', 18)}}的其他基金
Post-transcriptional regulations of proteomes in stress and senescence
应激和衰老中蛋白质组的转录后调控
- 批准号:
10342191 - 财政年份:2022
- 资助金额:
$ 12.01万 - 项目类别:
Post-transcriptional regulations of proteomes in stress and senescence
应激和衰老中蛋白质组的转录后调控
- 批准号:
10797686 - 财政年份:2022
- 资助金额:
$ 12.01万 - 项目类别:
Post-transcriptional regulations of proteomes in stress and senescence
应激和衰老中蛋白质组的转录后调控
- 批准号:
10706962 - 财政年份:2022
- 资助金额:
$ 12.01万 - 项目类别:
Recovering Proteoforms from Cardiovascular Omics Datasets: A Multi-omics Secondary Analysis
从心血管组学数据集中恢复蛋白质形式:多组学二次分析
- 批准号:
10084750 - 财政年份:2020
- 资助金额:
$ 12.01万 - 项目类别:
Alternative protein isoforms in ventricular remodeling
心室重构中的替代蛋白质亚型
- 批准号:
10391342 - 财政年份:2018
- 资助金额:
$ 12.01万 - 项目类别:
Alternative Protein Isoforms in Ventricular Remodeling
心室重构中的替代蛋白质亚型
- 批准号:
10660087 - 财政年份:2018
- 资助金额:
$ 12.01万 - 项目类别:
Alternative protein isoforms in ventricular remodeling
心室重构中的替代蛋白质亚型
- 批准号:
9904324 - 财政年份:2018
- 资助金额:
$ 12.01万 - 项目类别:
ER Stress and Protein Dynamics in Cardiac Remodeling
心脏重塑中的内质网应激和蛋白质动力学
- 批准号:
9502562 - 财政年份:2017
- 资助金额:
$ 12.01万 - 项目类别:
ER Stress and Protein Dynamics in Cardiac Remodeling
心脏重塑中的内质网应激和蛋白质动力学
- 批准号:
9034347 - 财政年份:2016
- 资助金额:
$ 12.01万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 12.01万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 12.01万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 12.01万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 12.01万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 12.01万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 12.01万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 12.01万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 12.01万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 12.01万 - 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
- 批准号:
10376866 - 财政年份:2020
- 资助金额:
$ 12.01万 - 项目类别: