Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets

优化的患者专用跨胫假肢接受腔的计算设计、制造和评估

基本信息

  • 批准号:
    9363821
  • 负责人:
  • 金额:
    $ 39.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Abstract Title: Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets Principle investigator: Dr. Hugh Herr Background: The overall goal of this application is to further develop and clinically assess a computational and data-driven design and manufacturing framework for mechanical interfaces that quantitatively produces transtibial prosthetic sockets in a faster and more cost-effective way than conventional processes. Traditionally, prosthetic socket production has been a craft activity, based primarily on the experience of the prosthetist. Even with advances in computer-aided design and computer-aided manufacturing (CAD/CAM), the design process remains manual. The manual nature of the process means it is non-repeatable and currently largely non-data-driven, and quantitative data is either not obtained or insufficiently employed. Furthermore, discomfort, skin problems and pressure ulcer formation remain prevalent. Through the proposed computational modeling framework, a repeatable, data-driven and patient-specific design process is made available which is based on scientific rationale. Objective/hypothesis: The main hypothesis of this proposal is that a socket, designed using the novel computational design framework, is equivalent to, or better than, a conventional socket (designed by a prosthetist) in terms of: 1) skin contact pressures, 2) gait symmetry, 3) walking metabolic cost, 4) skin irritation levels as assessed by the dermatologist, and 5) comfort as evaluated from a questionnaire. Our hypothesis is supported by the presented pilot data which shows reduced or equivalent skin contact pressures and subject reported comfort levels for several critical anatomical regions. Specific Aims: 1) Subject-specific biomechanical modeling for N=18 subjects, 2) Computational design and fabrication of sockets for N=18 subjects, and 3) Clinical evaluation of novel sockets for N=18 subjects. Study Design: A cohort of 18 subjects will be recruited for this study. MRI data will be recorded for all subjects. Through image segmentation geometrically accurate 3D finite element analysis (FEA) models will be constructed. Further, non- invasive indentation testing will be performed which, through combination with inverse FEA, provides accurate subject- specific mechanical properties for all subjects. The resulting predictive FEA models will then be used in a novel, data- driven, and automated computational design framework for prosthetic sockets, to design prosthetic sockets for all subjects. The framework optimizes the socket designs, as assessed by skin contact pressures and internal tissue strain, through iterative adjustment of the virtual tests sockets. Final designs are subsequently 3D printed. To evaluate the prosthetic sockets with each of the subjects each subject will do a standing and walking exercise using their conventional sockets or the novel sockets. Meanwhile skin contact forces, walking metabolic cost, and gait symmetry are recorded. After the exercises, skin irritation will be assessed by a dermatologist, and socket comfort is assessed using a questionnaire. Together this data provides a quantitative and qualitative evaluation and comparison of the novel and conventional sockets.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HUGH M HERR其他文献

HUGH M HERR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HUGH M HERR', 18)}}的其他基金

Agonist-Antagonist Myoneural Interface for Functional Limb Restoration after Transtibial Amputation
激动剂-拮抗剂肌神经接口用于小腿截肢后肢体功能恢复
  • 批准号:
    9893886
  • 财政年份:
    2019
  • 资助金额:
    $ 39.04万
  • 项目类别:
Agonist-Antagonist Myoneural Interface for Functional Limb Restoration after Transtibial Amputation
激动剂-拮抗剂肌神经接口用于小腿截肢后肢体功能恢复
  • 批准号:
    10355484
  • 财政年份:
    2019
  • 资助金额:
    $ 39.04万
  • 项目类别:
Agonist-Antagonist Myoneural Interface for Functional Limb Restoration after Transtibial Amputation
激动剂-拮抗剂肌神经接口用于小腿截肢后肢体功能恢复
  • 批准号:
    10560547
  • 财政年份:
    2019
  • 资助金额:
    $ 39.04万
  • 项目类别:
Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets
优化的患者专用跨胫假肢接受腔的计算设计、制造和评估
  • 批准号:
    9753235
  • 财政年份:
    2017
  • 资助金额:
    $ 39.04万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了