Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets
优化的患者专用跨胫假肢接受腔的计算设计、制造和评估
基本信息
- 批准号:9753235
- 负责人:
- 金额:$ 46.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAlgorithmsAmputationAmputeesAnatomyArtificial LegCardiovascular DiseasesClinicalComputer SimulationComputer-Aided DesignComputer-Assisted ManufacturingDataData ReportingDecubitus ulcerDermatologicDermatologistDevelopmentDirect ExpenditureEvaluationExerciseFinancial costFinite Element AnalysisGeometryGoalsHourHumanImageImpaired wound healingIndirect CalorimetryKnowledgeLower ExtremityMagnetic Resonance ImagingManualsMeasuresMechanicsMetabolicMethodsModelingMotionMusculoskeletalNatureObesityOutcomes ResearchParticipantPathologyPatientsPerformancePersonsPopulationPricePrintingProceduresProcessProductionProsthesis DesignProtocols documentationQualitative EvaluationsQuality of lifeQuantitative EvaluationsQuestionnairesRecurrenceReport (document)ReportingResearchResearch DesignResearch PersonnelShapesSkinSkin UlcerSystemTestingTissuesUnited StatesUser-Computer InterfaceVeteransWalkingWritingbasebiomechanical modelchronic woundclinical efficacycohortcomputer frameworkcostcost effectivedata acquisitiondesignexperienceexperimental studygait examinationgait symmetryimaging Segmentationimprovediterative designlimb amputationmechanical propertiesmodel developmentnon-invasive imagingnovelpressurepreventprosthetic socketprototyperecruitresearch clinical testingsensorskin irritationsocket designsoft tissuetoolvirtual
项目摘要
Abstract
Title: Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets
Principle investigator: Dr. Hugh Herr
Background: The overall goal of this application is to further develop and clinically assess a computational and data-driven
design and manufacturing framework for mechanical interfaces that quantitatively produces transtibial prosthetic sockets in
a faster and more cost-effective way than conventional processes. Traditionally, prosthetic socket production has been a
craft activity, based primarily on the experience of the prosthetist. Even with advances in computer-aided design and
computer-aided manufacturing (CAD/CAM), the design process remains manual. The manual nature of the process means
it is non-repeatable and currently largely non-data-driven, and quantitative data is either not obtained or insufficiently
employed. Furthermore, discomfort, skin problems and pressure ulcer formation remain prevalent. Through the proposed
computational modeling framework, a repeatable, data-driven and patient-specific design process is made available which
is based on scientific rationale.
Objective/hypothesis: The main hypothesis of this proposal is that a socket, designed using the novel computational design
framework, is equivalent to, or better than, a conventional socket (designed by a prosthetist) in terms of: 1) skin contact
pressures, 2) gait symmetry, 3) walking metabolic cost, 4) skin irritation levels as assessed by the dermatologist, and 5)
comfort as evaluated from a questionnaire. Our hypothesis is supported by the presented pilot data which shows reduced or
equivalent skin contact pressures and subject reported comfort levels for several critical anatomical regions.
Specific Aims: 1) Subject-specific biomechanical modeling for N=18 subjects, 2) Computational design and fabrication of
sockets for N=18 subjects, and 3) Clinical evaluation of novel sockets for N=18 subjects.
Study Design: A cohort of 18 subjects will be recruited for this study. MRI data will be recorded for all subjects. Through
image segmentation geometrically accurate 3D finite element analysis (FEA) models will be constructed. Further, non-
invasive indentation testing will be performed which, through combination with inverse FEA, provides accurate subject-
specific mechanical properties for all subjects. The resulting predictive FEA models will then be used in a novel, data-
driven, and automated computational design framework for prosthetic sockets, to design prosthetic sockets for all subjects.
The framework optimizes the socket designs, as assessed by skin contact pressures and internal tissue strain, through
iterative adjustment of the virtual tests sockets. Final designs are subsequently 3D printed. To evaluate the prosthetic sockets
with each of the subjects each subject will do a standing and walking exercise using their conventional sockets or the novel
sockets. Meanwhile skin contact forces, walking metabolic cost, and gait symmetry are recorded. After the exercises, skin
irritation will be assessed by a dermatologist, and socket comfort is assessed using a questionnaire. Together this data
provides a quantitative and qualitative evaluation and comparison of the novel and conventional sockets.
抽象的
标题:优化的患者专用经胫骨假肢接受腔的计算设计、制造和评估
首席研究员:Hugh Herr 博士
背景:该应用程序的总体目标是进一步开发和临床评估计算和数据驱动的
机械接口的设计和制造框架,可定量生产经胫骨假肢接受腔
比传统流程更快、更具成本效益的方式。传统上,假肢接受腔的生产一直是
工艺活动,主要基于假肢师的经验。即使计算机辅助设计和技术不断进步
计算机辅助制造(CAD/CAM),设计过程仍然是手动的。该过程的手动性质意味着
它是不可重复的,目前很大程度上是非数据驱动的,定量数据要么没有获得,要么不充分
受雇。此外,不适、皮肤问题和压疮形成仍然普遍存在。通过提议的
计算建模框架是一个可重复的、数据驱动的、针对患者的设计过程,
是有科学依据的。
目标/假设:该提案的主要假设是使用新颖的计算设计设计的套接字
框架,在以下方面相当于或优于传统接受腔(由假肢专家设计):1)皮肤接触
压力,2) 步态对称性,3) 步行代谢成本,4) 皮肤科医生评估的皮肤刺激水平,以及 5)
通过问卷评估的舒适度。我们的假设得到了所提供的试点数据的支持,该数据显示减少或
等效的皮肤接触压力和受试者报告的几个关键解剖区域的舒适度。
具体目标:1) 针对 N=18 名受试者的受试者特定生物力学建模,2) 计算设计和制造
N=18 名受试者的插座,以及 3) N=18 名受试者的新型插座的临床评估。
研究设计:本研究将招募 18 名受试者。所有受试者的 MRI 数据都会被记录。通过
将构建图像分割几何精确的 3D 有限元分析 (FEA) 模型。此外,非
将进行侵入性压痕测试,通过与反向有限元分析相结合,提供准确的主题
所有科目的特定机械性能。由此产生的预测 FEA 模型将用于一种新颖的数据-
驱动的、自动化的假肢接受腔计算设计框架,为所有受试者设计假肢接受腔。
该框架通过皮肤接触压力和内部组织应变评估,优化了插座设计
虚拟测试插座的迭代调整。最终设计随后进行 3D 打印。评估假肢接受腔
每个受试者将使用他们的传统插座或新颖的插座进行站立和行走练习
插座。同时记录皮肤接触力、步行代谢成本和步态对称性。运动后皮肤
皮肤科医生将评估刺激性,并使用问卷评估插座舒适度。综合这些数据
提供新型插座和传统插座的定量和定性评估和比较。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HUGH M HERR其他文献
HUGH M HERR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HUGH M HERR', 18)}}的其他基金
Agonist-Antagonist Myoneural Interface for Functional Limb Restoration after Transtibial Amputation
激动剂-拮抗剂肌神经接口用于小腿截肢后肢体功能恢复
- 批准号:
9893886 - 财政年份:2019
- 资助金额:
$ 46.52万 - 项目类别:
Agonist-Antagonist Myoneural Interface for Functional Limb Restoration after Transtibial Amputation
激动剂-拮抗剂肌神经接口用于小腿截肢后肢体功能恢复
- 批准号:
10355484 - 财政年份:2019
- 资助金额:
$ 46.52万 - 项目类别:
Agonist-Antagonist Myoneural Interface for Functional Limb Restoration after Transtibial Amputation
激动剂-拮抗剂肌神经接口用于小腿截肢后肢体功能恢复
- 批准号:
10560547 - 财政年份:2019
- 资助金额:
$ 46.52万 - 项目类别:
Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets
优化的患者专用跨胫假肢接受腔的计算设计、制造和评估
- 批准号:
9363821 - 财政年份:2017
- 资助金额:
$ 46.52万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 46.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 46.52万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 46.52万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 46.52万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 46.52万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 46.52万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 46.52万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 46.52万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 46.52万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 46.52万 - 项目类别:
Standard Grant














{{item.name}}会员




