Signaling in cell expansion and morphogenesis
细胞扩张和形态发生中的信号传导
基本信息
- 批准号:9291390
- 负责人:
- 金额:$ 46.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-25 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcclimatizationActinsAffectAgricultureAlpha CellAnabolismArabidopsisAreaAtomic Force MicroscopyBiochemicalBiochemical PathwayBiologicalBiological ModelsCalciumCalcium SignalingCell MaintenanceCell SizeCell WallCell membraneCell physiologyCellsCellular StructuresCharacteristicsConflict (Psychology)CuesCytoskeletonDevelopmentEnvironmentEquilibriumEventExhibitsExtracellular MatrixGene ExpressionGoalsGrowthHomeostasisIndividualLightLinkMass Spectrum AnalysisMeasurementMechanicsMediatingMembrane PotentialsMethodsMicrofluidicsMicrotubulesModelingMolecularMorphogenesisOrganOrganismPathway interactionsPhosphotransferasesPlant RootsPlantsPlayProcessPropertyProteomicsRecoveryRegulationRegulatory PathwayResearchRoleRoot TipSalineScourgeSeriesSignal PathwaySignal TransductionSodium ChlorideStressSystemTimeTissuesUnited States National Institutes of HealthVesicleViolenceWaterWorkbasebiological adaptation to stressbiological systemscell growthcell injuryenvironmental changehigh resolution imagingimaging approachinsightmechanical propertiesmutantorgan growthphosphoproteomicspressurepreventreceptorresponserho GTP-Binding Proteinssensory systemspatiotemporaltraffickinguptake
项目摘要
Project Summary
The integrity of cells is tightly controlled to keep organisms alive in the face of environmental change. The
normal process of growth, however, requires that cells partly disrupt cellular structures that provide stability.
These conflicting cellular priorities create challenges for cells in balancing integrity and extensibility. The root
of Arabidopsis is adept at dynamically regulating growth in response to stressful environments such as salinity
and provides a model developmental system where growth is localized to a specific region of the organ that is
accessible to high-resolution imaging. Recent work has revealed that cell integrity during salt stress is
maintained through the mechano-sensitive receptor-like kinase FERONIA. Identification of this essential
regulatory pathway provides opportunities to understand the mechanism cells use to integrate information on
cellular mechanics into decisions that control the biosynthesis of the extracellular matrix, which determines the
growth potential of cells.
Current understanding of how growth is organized in plants has largely focused on cellular contexts where tip-
growth is predominant and wall biosynthesis is localized to a discrete focal area in the cell. This process is
thought to be distinct from the major mode of cell growth in organs where delivery of new wall materials occurs
in a distributed manner across the cell. New work presented here identifies an essential function for the
FERONIA (FER) kinase in regulating the mechanical properties of the wall and cell integrity under salt stress.
These findings suggest that dynamic regulation of wall biosynthesis by mechanical cues may be necessary to
maintain cell integrity during stress.
The project aims to elucidate the cellular mechanisms by which salinity disrupts cell integrity and the role of
FERONIA in reorganizing the biosynthesis of the extracellular matrix to permit growth while maintaining cell
integrity. To achieve this goal we will use high-resolution imaging approaches including light and force
measurements and advanced proteomic methods that enable molecular insight into the biochemical pathways
that link wall mechanics to intracellular signaling, cytoskeletal dynamics and ECM biosynthesis. Specifically
we aim to 1) Understand the role of FER in regulating vesicle trafficking and dynamical properties of the actin
and microtubule-based cytoskeleton to understand how these processes affect delivery of cargo for wall
biosynthesis during stress. 2) FER-dependent intracellular calcium transients will be used as beacons of
signaling activity to determine the cell-autonomy of FER function with respect to cell integrity and vesicle
trafficking. 3) Quantitative phosphoproteomics will identify signaling components that directly interact with FER
and the Rho-GTPase from Plants (ROPs) to link receptor activity to wall biosynthesis and calcium signaling.
The proposed research is significant as it will advance our understanding of cellular homeostasis mechanisms
that integrate mechanical and environmental stress cues using root growth as a model.
项目摘要
细胞的完整性受到严格控制,以使有机体在面对环境变化时保持存活。这个
然而,正常的生长过程需要细胞部分破坏提供稳定性的细胞结构。
这些相互冲突的蜂窝优先级给蜂窝在平衡完整性和可扩展性方面带来了挑战。根,根
在盐度等胁迫环境下,拟南芥擅长动态调节生长
并提供了一种模型发育系统,其中生长局限于器官的特定区域
可用于高分辨率成像。最近的研究表明,盐胁迫期间细胞的完整性是
通过机械敏感的受体样激酶费洛尼亚维持。确定这一基本要素
调控途径提供了机会来理解细胞用来整合信息的机制
细胞力学转化为控制细胞外基质生物合成的决策,这决定了
细胞的生长潜力。
目前对植物生长如何组织的理解主要集中在细胞环境中,在细胞环境中,尖端-
生长是主要的,壁生物合成局限于细胞中的一个离散的焦点区域。这个过程是
被认为不同于器官中细胞生长的主要模式,在器官中发生新的壁材料的输送
在整个单元中以分布的方式。这里提出的新工作确定了
费洛尼亚(FER)激酶在调节盐胁迫下细胞壁的力学性质和细胞完整性中的作用。
这些发现表明,通过机械提示动态调节壁生物合成可能是必要的
在压力下保持细胞的完整性。
该项目旨在阐明盐度破坏细胞完整性的细胞机制以及
费洛尼亚在重组细胞外基质的生物合成以允许生长的同时维持细胞
正直。为了实现这一目标,我们将使用包括光和力在内的高分辨率成像方法
使分子能够深入了解生化途径的测量和先进的蛋白质组学方法
这将壁力学与细胞内信号、细胞骨架动力学和细胞外基质的生物合成联系在一起。特指
我们的目标是:1)了解FER在调节囊泡运输中的作用和肌动蛋白的动力学性质
和基于微管的细胞骨架,以了解这些过程如何影响墙的货物运输
应激过程中的生物合成。2)依赖于FER的细胞内钙瞬变将被用作
决定FER功能与细胞完整性和小泡有关的细胞自主性的信号活性
贩卖人口。3)定量磷酸蛋白质组学将识别直接与FER相互作用的信号成分
以及植物Rho-GTP酶(Rop),将受体活性与壁生物合成和钙信号联系起来。
这项拟议的研究具有重要意义,因为它将促进我们对细胞内稳态机制的理解
将机械和环境压力信号结合起来,以根生长为模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSE R DINNENY其他文献
JOSE R DINNENY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSE R DINNENY', 18)}}的其他基金
Signaling in cell expansion and morphogenesis
细胞扩张和形态发生中的信号传导
- 批准号:
9901546 - 财政年份:2017
- 资助金额:
$ 46.68万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
7133001 - 财政年份:2005
- 资助金额:
$ 46.68万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
6994847 - 财政年份:2005
- 资助金额:
$ 46.68万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
7318870 - 财政年份:2005
- 资助金额:
$ 46.68万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 46.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 46.68万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 46.68万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 46.68万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 46.68万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 46.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 46.68万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 46.68万 - 项目类别:














{{item.name}}会员




