Signaling in cell expansion and morphogenesis
细胞扩张和形态发生中的信号传导
基本信息
- 批准号:9291390
- 负责人:
- 金额:$ 46.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-25 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcclimatizationActinsAffectAgricultureAlpha CellAnabolismArabidopsisAreaAtomic Force MicroscopyBiochemicalBiochemical PathwayBiologicalBiological ModelsCalciumCalcium SignalingCell MaintenanceCell SizeCell WallCell membraneCell physiologyCellsCellular StructuresCharacteristicsConflict (Psychology)CuesCytoskeletonDevelopmentEnvironmentEquilibriumEventExhibitsExtracellular MatrixGene ExpressionGoalsGrowthHomeostasisIndividualLightLinkMass Spectrum AnalysisMeasurementMechanicsMediatingMembrane PotentialsMethodsMicrofluidicsMicrotubulesModelingMolecularMorphogenesisOrganOrganismPathway interactionsPhosphotransferasesPlant RootsPlantsPlayProcessPropertyProteomicsRecoveryRegulationRegulatory PathwayResearchRoleRoot TipSalineScourgeSeriesSignal PathwaySignal TransductionSodium ChlorideStressSystemTimeTissuesUnited States National Institutes of HealthVesicleViolenceWaterWorkbasebiological adaptation to stressbiological systemscell growthcell injuryenvironmental changehigh resolution imagingimaging approachinsightmechanical propertiesmutantorgan growthphosphoproteomicspressurepreventreceptorresponserho GTP-Binding Proteinssensory systemspatiotemporaltraffickinguptake
项目摘要
Project Summary
The integrity of cells is tightly controlled to keep organisms alive in the face of environmental change. The
normal process of growth, however, requires that cells partly disrupt cellular structures that provide stability.
These conflicting cellular priorities create challenges for cells in balancing integrity and extensibility. The root
of Arabidopsis is adept at dynamically regulating growth in response to stressful environments such as salinity
and provides a model developmental system where growth is localized to a specific region of the organ that is
accessible to high-resolution imaging. Recent work has revealed that cell integrity during salt stress is
maintained through the mechano-sensitive receptor-like kinase FERONIA. Identification of this essential
regulatory pathway provides opportunities to understand the mechanism cells use to integrate information on
cellular mechanics into decisions that control the biosynthesis of the extracellular matrix, which determines the
growth potential of cells.
Current understanding of how growth is organized in plants has largely focused on cellular contexts where tip-
growth is predominant and wall biosynthesis is localized to a discrete focal area in the cell. This process is
thought to be distinct from the major mode of cell growth in organs where delivery of new wall materials occurs
in a distributed manner across the cell. New work presented here identifies an essential function for the
FERONIA (FER) kinase in regulating the mechanical properties of the wall and cell integrity under salt stress.
These findings suggest that dynamic regulation of wall biosynthesis by mechanical cues may be necessary to
maintain cell integrity during stress.
The project aims to elucidate the cellular mechanisms by which salinity disrupts cell integrity and the role of
FERONIA in reorganizing the biosynthesis of the extracellular matrix to permit growth while maintaining cell
integrity. To achieve this goal we will use high-resolution imaging approaches including light and force
measurements and advanced proteomic methods that enable molecular insight into the biochemical pathways
that link wall mechanics to intracellular signaling, cytoskeletal dynamics and ECM biosynthesis. Specifically
we aim to 1) Understand the role of FER in regulating vesicle trafficking and dynamical properties of the actin
and microtubule-based cytoskeleton to understand how these processes affect delivery of cargo for wall
biosynthesis during stress. 2) FER-dependent intracellular calcium transients will be used as beacons of
signaling activity to determine the cell-autonomy of FER function with respect to cell integrity and vesicle
trafficking. 3) Quantitative phosphoproteomics will identify signaling components that directly interact with FER
and the Rho-GTPase from Plants (ROPs) to link receptor activity to wall biosynthesis and calcium signaling.
The proposed research is significant as it will advance our understanding of cellular homeostasis mechanisms
that integrate mechanical and environmental stress cues using root growth as a model.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSE R DINNENY其他文献
JOSE R DINNENY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSE R DINNENY', 18)}}的其他基金
Signaling in cell expansion and morphogenesis
细胞扩张和形态发生中的信号传导
- 批准号:
9901546 - 财政年份:2017
- 资助金额:
$ 46.68万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
7133001 - 财政年份:2005
- 资助金额:
$ 46.68万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
6994847 - 财政年份:2005
- 资助金额:
$ 46.68万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
7318870 - 财政年份:2005
- 资助金额:
$ 46.68万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 46.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 46.68万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 46.68万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 46.68万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 46.68万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 46.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 46.68万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 46.68万 - 项目类别:














{{item.name}}会员




