Signaling in cell expansion and morphogenesis

细胞扩张和形态发生中的信号传导

基本信息

项目摘要

Project Summary The integrity of cells is tightly controlled to keep organisms alive in the face of environmental change. The normal process of growth, however, requires that cells partly disrupt cellular structures that provide stability. These conflicting cellular priorities create challenges for cells in balancing integrity and extensibility. The root of Arabidopsis is adept at dynamically regulating growth in response to stressful environments such as salinity and provides a model developmental system where growth is localized to a specific region of the organ that is accessible to high-resolution imaging. Recent work has revealed that cell integrity during salt stress is maintained through the mechano-sensitive receptor-like kinase FERONIA. Identification of this essential regulatory pathway provides opportunities to understand the mechanism cells use to integrate information on cellular mechanics into decisions that control the biosynthesis of the extracellular matrix, which determines the growth potential of cells. Current understanding of how growth is organized in plants has largely focused on cellular contexts where tip- growth is predominant and wall biosynthesis is localized to a discrete focal area in the cell. This process is thought to be distinct from the major mode of cell growth in organs where delivery of new wall materials occurs in a distributed manner across the cell. New work presented here identifies an essential function for the FERONIA (FER) kinase in regulating the mechanical properties of the wall and cell integrity under salt stress. These findings suggest that dynamic regulation of wall biosynthesis by mechanical cues may be necessary to maintain cell integrity during stress. The project aims to elucidate the cellular mechanisms by which salinity disrupts cell integrity and the role of FERONIA in reorganizing the biosynthesis of the extracellular matrix to permit growth while maintaining cell integrity. To achieve this goal we will use high-resolution imaging approaches including light and force measurements and advanced proteomic methods that enable molecular insight into the biochemical pathways that link wall mechanics to intracellular signaling, cytoskeletal dynamics and ECM biosynthesis. Specifically we aim to 1) Understand the role of FER in regulating vesicle trafficking and dynamical properties of the actin and microtubule-based cytoskeleton to understand how these processes affect delivery of cargo for wall biosynthesis during stress. 2) FER-dependent intracellular calcium transients will be used as beacons of signaling activity to determine the cell-autonomy of FER function with respect to cell integrity and vesicle trafficking. 3) Quantitative phosphoproteomics will identify signaling components that directly interact with FER and the Rho-GTPase from Plants (ROPs) to link receptor activity to wall biosynthesis and calcium signaling. The proposed research is significant as it will advance our understanding of cellular homeostasis mechanisms that integrate mechanical and environmental stress cues using root growth as a model.
项目摘要 细胞的完整性受到严格控制,以保持生物体在环境变化中存活。的 然而,正常的生长过程要求细胞部分破坏提供稳定性的细胞结构。 这些冲突的蜂窝优先级为蜂窝在平衡完整性和可扩展性方面带来了挑战。根 拟南芥是善于动态调节生长响应胁迫环境,如盐度 并提供了一种模型发育系统,其中生长局限于器官的特定区域, 可以进行高分辨率成像。最近的研究表明,在盐胁迫期间,细胞完整性 通过机械敏感受体样激酶FERONIA维持。确定这一基本 调控途径提供了机会,了解机制细胞使用整合信息, 细胞力学的决定,控制细胞外基质的生物合成,这决定了 细胞的生长潜力。 目前对植物生长如何组织的理解主要集中在细胞环境中, 生长是主要的,并且壁生物合成定位于细胞中的离散焦点区域。这个过程是 被认为与器官中细胞生长的主要模式不同,在器官中发生新壁材料的递送 以分布的方式跨越小区。这里提出的新工作确定了一个基本功能, FERONIA(FER)激酶在盐胁迫下调节细胞壁的机械性质和细胞完整性。 这些发现表明,通过机械信号对细胞壁生物合成的动态调节可能是必要的, 在压力下保持细胞完整性。 该项目旨在阐明盐度破坏细胞完整性的细胞机制以及 FERONIA重组细胞外基质的生物合成,以允许生长,同时维持细胞 完整为了实现这一目标,我们将使用高分辨率成像方法,包括光和力 测量和先进的蛋白质组学方法,使分子洞察生化途径 将细胞壁力学与细胞内信号传导、细胞骨架动力学和ECM生物合成联系起来。具体 我们的目标是:1)了解FER在调节囊泡运输和肌动蛋白动力学特性中的作用 和基于微管的细胞骨架,以了解这些过程如何影响壁的货物输送 在胁迫下的生物合成。2)FER依赖性细胞内钙瞬变将被用作 信号传导活性,以确定FER功能在细胞完整性和囊泡方面的细胞自主性 贩卖人口3)定量磷酸化蛋白质组学将确定直接与FER相互作用的信号组分 以及来自植物的Rho-GTdR(ROP)将受体活性与细胞壁生物合成和钙信号传导联系起来。 这项研究具有重要意义,因为它将促进我们对细胞稳态机制的理解 它以根系生长为模型,整合了机械和环境压力的线索。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell wall mechanics: Some new twists
细胞壁力学:一些新的变化
  • DOI:
    10.1016/j.bpj.2022.02.017
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Weizbauer, Renate A.;Cook, Douglas D.
  • 通讯作者:
    Cook, Douglas D.
Tethering of cellulose synthase to microtubules dampens mechano-induced cytoskeletal organization in Arabidopsis pavement cells.
  • DOI:
    10.1038/s41477-022-01218-7
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    18
  • 作者:
    Schneider, Rene;Ehrhardt, David W.;Meyerowitz, Elliot M.;Sampathkumar, Arun
  • 通讯作者:
    Sampathkumar, Arun
TRANVIA (TVA) facilitates cellulose synthase trafficking and delivery to the plasma membrane.
TRAVIA (TVA) 促进纤维素合酶运输并递送至质膜。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSE R DINNENY其他文献

JOSE R DINNENY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSE R DINNENY', 18)}}的其他基金

Signaling in cell expansion and morphogenesis
细胞扩张和形态发生中的信号传导
  • 批准号:
    9291390
  • 财政年份:
    2017
  • 资助金额:
    $ 47.91万
  • 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
  • 批准号:
    7133001
  • 财政年份:
    2005
  • 资助金额:
    $ 47.91万
  • 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
  • 批准号:
    6994847
  • 财政年份:
    2005
  • 资助金额:
    $ 47.91万
  • 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
  • 批准号:
    7318870
  • 财政年份:
    2005
  • 资助金额:
    $ 47.91万
  • 项目类别:

相似海外基金

A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    342887
  • 财政年份:
    2016
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    278338
  • 财政年份:
    2013
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
  • 批准号:
    8505938
  • 财政年份:
    2012
  • 资助金额:
    $ 47.91万
  • 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
  • 批准号:
    7931495
  • 财政年份:
    2009
  • 资助金额:
    $ 47.91万
  • 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
  • 批准号:
    19390048
  • 财政年份:
    2007
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6546977
  • 财政年份:
    2003
  • 资助金额:
    $ 47.91万
  • 项目类别:
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6655612
  • 财政年份:
    2003
  • 资助金额:
    $ 47.91万
  • 项目类别:
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
  • 批准号:
    5311554
  • 财政年份:
    2001
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
  • 批准号:
    6316669
  • 财政年份:
    2000
  • 资助金额:
    $ 47.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了