Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
基本信息
- 批准号:9246272
- 负责人:
- 金额:$ 19.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAffectAgeAppearanceAreaBiocompatible MaterialsBiomimeticsBone GrowthBone LengtheningCCL25 geneCartilageChemicalsChildChildhoodChondrocytesChondrogenesisClinicClinical ManagementComplexCuesDeformityDevelopmentEncapsulatedEngineeringEpiphysial cartilageExcisionExtracellular MatrixFatty acid glycerol estersFractureGoalsGrowthHistologyHydrogelsImpairmentImplantInjuryLeadLeftLocationMeasuresMechanicsMesenchymal Stem CellsMineralsModelingMorphologyNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusOsteogenesisPhasePlasticizersPrintingPropertyQuality of lifeRecruitment ActivityRecurrenceSignal TransductionSiteStem cellsStromal Cell-Derived Factor 1StructureTechnologyTestingThickTimeTissuesTranslatingWorkbonecartilage repaircartilaginouscell motilitychemokinedesigndigitalimplantationimprovedinjuredlong bonemechanical propertiesmicroCTmimeticsnovelpediatric patientspreventscaffoldskeletalstem cell differentiationsubchondral bonetissue repair
项目摘要
Physeal injuries account for 30% of all pediatric fractures and can result in impaired bone growth. The physis
(or, “growth plate”) is a cartilage region at the end of children's long bones that is responsible for longitudinal
bone growth. Once damaged, mesenchymal stem cells from the underlying subchondral bone migrate into the
injured physis, undergo osteogenesis, and form unwanted bony tissue, referred to as a “bony bar”. This can
lead to angular deformities or completely halt longitudinal bone growth, which is devastating for children that
are still growing. Current surgical treatments involve the removal of the bony bar. The site is often filled either
with a soft fat graft or a hard, non-degradable plastic, both of which offer imperfect solutions leading to collapse
of the resection site or the dislodgement of the biomaterial, respectively. Thus, the overall goal of this project is
to develop an improved treatment option that utilizes 3D printing technology to engineer a biomimetic of growth
plate cartilage containing mechanically-graded 3D stiff structures in-filled with a soft cartilage biomimetic
hydrogel. Our hypothesis is that a 3D printed biomimetic of growth plate cartilage prevents collapse at
the resection site through its structure and simultaneously recruits MSCs to direct them through
zonally appropriate physiochemical cues to a chondrogenic, not osteogenic, lineage and prevents
bony bar formation by replacing it with a cartilaginous repair tissue. Thus, long-term the 3D printed
biomimetic will allow normal bone elongation after physeal injury. To test this hypothesis, we have developed
two aims for the R21 phase and two aims for the R33 phase. In the R21 phase, we will (1) print a 3D construct
that mimics the morphology and mechanical properties of growth plate cartilage (Aim 1) and (2) evaluate the
ability of a 3D printed biomimetic of growth plate cartilage to prevent bony bar formation in a rabbit model of
physeal injury (Aim 2). At the conclusion of the 2-year exploratory phase, we expect to have established a
novel biomimetic of growth plate cartilage designed through 3D printing technology and confirmed that a 3D
printed stiff structure mimicking that of the growth plate and infilled with a soft hydrogel prevents bony bar
reformation. In the R33 phase, we will (1) assess cartilage formation in the implanted 3D printed biomimetic
construct in a rabbit model of physeal injury through the recruitment of endogenous stem cells (Aim 3), and (2)
evaluate the ability of a 3D printed biomimetic of growth plate cartilage to enable longitudinal bone growth in a
rabbit model of physeal injury, which is followed for 1 year after implantation. At the conclusion of the 3-year
R33 phase, we expect to have demonstrated that filling the site after bony bar resection with a 3D printed
biomimetic of growth plate cartilage prevents bony bar reformation and supports cartilage formation that is
eventually converted into new bone following growth to skeletal maturity. By providing a solution to restore
normal bone growth, this 3D printed biomimetic of growth plate cartilage has the potential to be translated into
the clinic to improve the quality of life of affected children.
骨骺损伤占所有儿科骨折的30%,可导致骨骼生长受损。生长骨骺板
(or,“生长板”)是儿童长骨末端的软骨区域,负责纵向
骨骼生长一旦受损,来自底层软骨下骨的间充质干细胞迁移到软骨中。
受伤的骺板经历骨生成,并形成不需要的骨组织,称为“骨棒”。这可以
导致成角畸形或完全停止纵向骨骼生长,这对儿童来说是毁灭性的,
仍在增长目前的手术治疗包括去除骨棒。该网站往往是填补要么
用软脂肪移植物或硬的不可降解塑料,这两种方法都提供了不完美的解决方案,导致崩溃
切除部位或生物材料的移位。因此,本项目的总体目标是
开发一种改进的治疗方案,利用3D打印技术来设计仿生生长
含有填充有软软骨仿生物的机械分级3D刚性结构的板软骨
水凝胶。我们的假设是,生长板软骨的3D打印仿生物可以防止塌陷,
切除部位通过其结构,同时招募MSC,
区域适当的生理化学线索,软骨,而不是成骨,谱系,并防止
通过用软骨修复组织替代骨棒形成。因此,长期的3D打印
仿生将允许骨骺损伤后的正常骨伸长。为了验证这一假设,我们开发了
R21阶段有两个目标,R33阶段有两个目标。在R21阶段,我们将(1)打印一个3D结构
模拟生长板软骨的形态和力学性能(目标1)和(2)评估
生长板软骨的3D打印仿生物在兔模型中防止骨棒形成的能力
骨骺损伤(目标2)。在为期两年的探索阶段结束时,我们预计将建立一个
通过3D打印技术设计的新型仿生生长板软骨,并证实了3D
印刷的硬结构模仿生长板的结构,并填充有软水凝胶,
改革。在R33阶段,我们将(1)评估植入的3D打印仿生材料中的软骨形成,
通过募集内源性干细胞在骨骺损伤的兔模型中构建(目的3),和(2)
评估生长板软骨的3D打印仿生物在骨组织中实现纵向骨生长的能力。
兔骨骺损伤模型,植入后随访1年。在3年结束时,
R33阶段,我们希望已经证明,用3D打印的
生长板软骨的仿生学防止骨杆再形成并支持软骨形成,
最终在生长至骨骼成熟后转化为新骨。通过提供解决方案来恢复
正常的骨骼生长,这种生长板软骨的3D打印仿生有可能被转化为
诊所改善受影响儿童的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie J Bryant其他文献
Stephanie J Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie J Bryant', 18)}}的其他基金
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10378055 - 财政年份:2021
- 资助金额:
$ 19.42万 - 项目类别:
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10206869 - 财政年份:2021
- 资助金额:
$ 19.42万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10063721 - 财政年份:2020
- 资助金额:
$ 19.42万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10210394 - 财政年份:2020
- 资助金额:
$ 19.42万 - 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
- 批准号:
9611776 - 财政年份:2018
- 资助金额:
$ 19.42万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
10112931 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9926114 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10612072 - 财政年份:2016
- 资助金额:
$ 19.42万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10446482 - 财政年份:2016
- 资助金额:
$ 19.42万 - 项目类别:
Mechanically Stiff Hydrogels for Osteochondral Tissue Engineering
用于骨软骨组织工程的机械刚性水凝胶
- 批准号:
9321175 - 财政年份:2016
- 资助金额:
$ 19.42万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 19.42万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 19.42万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 19.42万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 19.42万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 19.42万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 19.42万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




