Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
基本信息
- 批准号:10206869
- 负责人:
- 金额:$ 16.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAlbuminsAmino AcidsBiocompatible MaterialsCellsChemistryClinicalConfocal MicroscopyCre driverDataDevelopmentDevicesEquipment MalfunctionEventFDA approvedForeign BodiesGenerationsGoalsHydrophobicityImplantIn VitroInflammationInflammatoryInflammatory ResponseInnate Immune SystemLabelLeadLinkLongevityMacrophage ActivationMass Spectrum AnalysisMembrane ProteinsMethionineMethionine-tRNA LigaseMethodsModelingMolecularMusMusculoskeletalMusculoskeletal SystemMyeloid CellsNatural regenerationNatureNecrosisPatientsPatternPlasmaPoint MutationProcessProductionProtein DynamicsProteinsRoleSerumSerum ProteinsSignal TransductionSiliconesSourceSurfaceTechniquesTestingTherapeutic InterventionTimeTissuesWild Type Mouseadverse outcomeanalogbasecapsulecommunication devicedesignhydrophilicityimplantable deviceimplantationin vitro Assayin vivoinsightmacrophageneutrophilnext generationpreventrecruitrepairedresponsetherapeutically effective
项目摘要
Therapies to repair or regenerate damage to the musculoskeletal system often involve the implantation of
synthetic materials to stabilize tissues or promote regrowth. However, synthetic materials induce a foreign body
response (FBR), which can lead to adverse outcomes. Our ability to design effective therapeutic strategies to
mitigate the FBR is hampered by an incomplete understanding of the molecular mechanisms that trigger the
FBR. The current dogma of the FBR assumes that serum proteins adsorb to biomaterial surfaces and unfold,
leading to irreversible adsorption and creating damage-associated molecular patterns (DAMPs) that initiate
inflammation. Our recent studies suggest that this view is insufficient and instead that proteins interact with
surfaces dynamically and that DAMPs may arise from multiple different sources. To this end, this proposal aims
to test the hypothesis that the adsorption of proteins onto implanted biomaterials is dynamic (turning over
continually and changing in time), and that the FBR is maintained by DAMPs derived from serum and by the
continuous generation of DAMPs that are produced by recruited myeloid cells. Two specific aims were developed
to test this hypothesis. Specific Aim #1 will determine the identity of surface-adsorbed proteins over time
in the FBR using bioorthogonal tagging. This aim will incorporate the methionine (Met) analog
azidohomoalanine to ubiquitously tag newly synthesized proteins at different times during the FBR in wildtype
mice with implants. The tagged and untagged newly synthesized proteins will be quantified and the proteins
identified with LC-MS/MS to determine the transient nature of the surface-adsorbed proteins. Specific Aim #2
will determine the origin of surface-adsorbed proteins and their identity in the FBR using cell-specific
bioorthogonal tagging. This aim will use a recently created mouse line that has a point mutation in methionyl-
tRNA synthetase (MetRS*) that enables cell-specific loading (via Cre drivers) of the Met analog azidonorleucine
into newly synthesized proteins. Albumin-Cre and LysM-Cre drivers will be used to determine the origin of the
adsorbed proteins from serum and myeloid cells, respectively. When combined with LC-MS/MS, the identity of
the adsorbed proteins from each source will also be determined. Each aim will investigate silicone as a model
implant, having a surface chemistry that is either hydrophobic (native surface) or hydrophilic (plasma-treated),
to study the role of hydrophobicity on the dynamics of surface-adsorbed proteins. In addition, a subset of proteins
from the LC-MS/MS results will be tested for their ability to activate macrophages in vitro and act as DAMPs. In
summary, this exploratory project will utilize recently developed in vivo protein labeling techniques to answer
fundamental questions about the events that trigger the FBR. Through this understanding, this project will
generate new hypotheses and inform the rational design of biomaterials to control surface-adsorbed DAMPs.
Long-term, our goal is to develop a biomaterial-based therapeutic intervention through which the FBR can be
prevented with unprecedented control and precision.
修复或再生肌肉骨骼系统损伤的治疗通常涉及植入
用来稳定组织或促进再生的合成材料。然而,合成材料会导致异物
反应(FBR),这可能导致不良后果。我们设计有效治疗策略的能力
缓解FBR受阻于对触发FBR的分子机制的不完全了解
FBR。目前的FBR信条假设血清蛋白质吸附到生物材料表面并展开,
导致不可逆吸附并产生与损伤相关的分子图案(阻尼值),从而引发
发炎。我们最近的研究表明,这种观点是不够的,相反,蛋白质与
表面是动态的,并且阻尼物可能来自多个不同来源。为此,这项建议旨在
为了检验蛋白质在植入的生物材料上的吸附是动态的假设(翻转
持续且随时间变化),而FBR由来自血清和
由重新招募的髓系细胞产生的持续产生的湿润。制定了两个具体目标
来检验这一假设。特定目标#1将随着时间的推移确定表面吸附蛋白质的特性
在FBR中使用生物正交标记。这一目标将纳入蛋氨酸(Met)类似物
叠氮高丙氨酸标记野生型FBR过程中不同时间新合成的蛋白质
植入器官的小鼠。标记的和未标记的新合成的蛋白质将被量化,并将蛋白质
用LC-MS/MS鉴定,以确定表面吸附蛋白质的瞬时性质。具体目标2
将确定表面吸附蛋白质的来源和它们在FBR中的特性
生物正交标记法。这个目标将使用最近创建的小鼠品系,该品系在甲硫基上有点突变-
TRNA合成酶(MetRS*),使甲硫氨酸类似物氮杂诺亮氨酸能够细胞特异性加载(通过Cre驱动程序)
变成新合成的蛋白质。白蛋白-Cre和LysM-Cre驱动程序将用于确定
分别从血清和髓系细胞中吸附蛋白质。当与LC-MS/MS联用时,
从每个来源吸附的蛋白质也将被确定。每个目标都将把硅胶作为模型进行研究
具有疏水性(天然表面)或亲水性(等离子体处理)的表面化学的植入物,
研究疏水性对蛋白质表面吸附动力学的影响。此外,蛋白质的一个子集
从LC-MS/MS结果将测试它们在体外激活巨噬细胞和作为阻尼剂的能力。在……里面
总结,这个探索性项目将利用最近发展的体内蛋白质标记技术来回答
关于触发FBR的事件的基本问题。通过这样的理解,这个项目将
产生新的假设,并为生物材料的合理设计提供信息,以控制表面吸附的阻尼。
从长远来看,我们的目标是开发一种基于生物材料的治疗干预,通过这种干预,FBR可以
以前所未有的控制和精确度阻止。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie J Bryant其他文献
Stephanie J Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie J Bryant', 18)}}的其他基金
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10378055 - 财政年份:2021
- 资助金额:
$ 16.75万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10063721 - 财政年份:2020
- 资助金额:
$ 16.75万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10210394 - 财政年份:2020
- 资助金额:
$ 16.75万 - 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
- 批准号:
9611776 - 财政年份:2018
- 资助金额:
$ 16.75万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
10112931 - 财政年份:2017
- 资助金额:
$ 16.75万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9926114 - 财政年份:2017
- 资助金额:
$ 16.75万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9246272 - 财政年份:2017
- 资助金额:
$ 16.75万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10612072 - 财政年份:2016
- 资助金额:
$ 16.75万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10446482 - 财政年份:2016
- 资助金额:
$ 16.75万 - 项目类别:
Mechanically Stiff Hydrogels for Osteochondral Tissue Engineering
用于骨软骨组织工程的机械刚性水凝胶
- 批准号:
9321175 - 财政年份:2016
- 资助金额:
$ 16.75万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 16.75万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 16.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 16.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 16.75万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 16.75万 - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




