Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
基本信息
- 批准号:10112931
- 负责人:
- 金额:$ 36.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAffectAgeAppearanceAreaBiocompatible MaterialsBiomimeticsBone GrowthBone LengtheningCCL25 geneCartilageChemicalsChildChildhoodChondrocytesChondrogenesisClinicClinical ManagementComplexCuesDeformityDevelopmentEncapsulatedEngineeringEpiphysial cartilageExcisionExtracellular MatrixFatty acid glycerol estersFractureGoalsGrowthHistologyHydrogelsImpairmentImplantInjuryLeadLeftLocationMeasuresMechanicsMesenchymal Stem CellsMineralsModelingMorphologyNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusOsteogenesisPhasePrintingPropertyQuality of lifeRecurrenceSignal TransductionSiteStromal Cell-Derived Factor 1StructureTechnologyTestingThickTimeTissuesTranslatingWorkbonecartilage repaircartilaginouschemokinedesigndigitalimplantationimprovedinjuredlong bonemechanical propertiesmicroCTmimeticsnovelpediatric patientspreventrecruitscaffoldskeletalstem cell differentiationstem cell migrationstem cellssubchondral bonetissue repair
项目摘要
Physeal injuries account for 30% of all pediatric fractures and can result in impaired bone growth. The physis
(or, “growth plate”) is a cartilage region at the end of children's long bones that is responsible for longitudinal
bone growth. Once damaged, mesenchymal stem cells from the underlying subchondral bone migrate into the
injured physis, undergo osteogenesis, and form unwanted bony tissue, referred to as a “bony bar”. This can
lead to angular deformities or completely halt longitudinal bone growth, which is devastating for children that
are still growing. Current surgical treatments involve the removal of the bony bar. The site is often filled either
with a soft fat graft or a hard, non-degradable plastic, both of which offer imperfect solutions leading to collapse
of the resection site or the dislodgement of the biomaterial, respectively. Thus, the overall goal of this project is
to develop an improved treatment option that utilizes 3D printing technology to engineer a biomimetic of growth
plate cartilage containing mechanically-graded 3D stiff structures in-filled with a soft cartilage biomimetic
hydrogel. Our hypothesis is that a 3D printed biomimetic of growth plate cartilage prevents collapse at
the resection site through its structure and simultaneously recruits MSCs to direct them through
zonally appropriate physiochemical cues to a chondrogenic, not osteogenic, lineage and prevents
bony bar formation by replacing it with a cartilaginous repair tissue. Thus, long-term the 3D printed
biomimetic will allow normal bone elongation after physeal injury. To test this hypothesis, we have developed
two aims for the R21 phase and two aims for the R33 phase. In the R21 phase, we will (1) print a 3D construct
that mimics the morphology and mechanical properties of growth plate cartilage (Aim 1) and (2) evaluate the
ability of a 3D printed biomimetic of growth plate cartilage to prevent bony bar formation in a rabbit model of
physeal injury (Aim 2). At the conclusion of the 2-year exploratory phase, we expect to have established a
novel biomimetic of growth plate cartilage designed through 3D printing technology and confirmed that a 3D
printed stiff structure mimicking that of the growth plate and infilled with a soft hydrogel prevents bony bar
reformation. In the R33 phase, we will (1) assess cartilage formation in the implanted 3D printed biomimetic
construct in a rabbit model of physeal injury through the recruitment of endogenous stem cells (Aim 3), and (2)
evaluate the ability of a 3D printed biomimetic of growth plate cartilage to enable longitudinal bone growth in a
rabbit model of physeal injury, which is followed for 1 year after implantation. At the conclusion of the 3-year
R33 phase, we expect to have demonstrated that filling the site after bony bar resection with a 3D printed
biomimetic of growth plate cartilage prevents bony bar reformation and supports cartilage formation that is
eventually converted into new bone following growth to skeletal maturity. By providing a solution to restore
normal bone growth, this 3D printed biomimetic of growth plate cartilage has the potential to be translated into
the clinic to improve the quality of life of affected children.
骨骺损伤占所有儿科骨折的30%,可导致骨骼生长受损。生长骨骺板
(or,“生长板”)是儿童长骨末端的软骨区域,负责纵向
骨骼生长一旦受损,来自底层软骨下骨的间充质干细胞迁移到软骨中。
受伤的骺板经历骨生成,并形成不需要的骨组织,称为“骨棒”。这可以
导致角畸形或完全停止纵向骨生长,这对
仍在增长目前的手术治疗包括去除骨棒。该网站往往是填补要么
用软脂肪移植物或硬的不可降解塑料,这两种方法都提供了不完美的解决方案,导致崩溃
切除部位或生物材料的移位。因此,本项目的总体目标是
开发一种改进的治疗方案,利用3D打印技术来设计仿生生长
含有填充有软软骨仿生物的机械分级3D刚性结构的板软骨
水凝胶。我们的假设是,生长板软骨的3D打印仿生物可以防止塌陷,
切除部位通过其结构,同时招募MSC,
区域适当的生理化学线索,软骨,而不是成骨,谱系,并防止
通过用软骨修复组织替代骨棒形成。因此,长期的3D打印
仿生将允许骨骺损伤后的正常骨伸长。为了验证这一假设,我们开发了
R21阶段有两个目标,R33阶段有两个目标。在R21阶段,我们将(1)打印一个3D结构
模拟生长板软骨的形态和力学性能(目标1)和(2)评估
生长板软骨的3D打印仿生物在兔模型中防止骨棒形成的能力
骨骺损伤(目标2)。在为期两年的探索阶段结束时,我们预计将建立一个
通过3D打印技术设计的新型仿生生长板软骨,并证实了3D
印刷的硬结构模仿生长板的结构,并填充有软水凝胶,
改革。在R33阶段,我们将(1)评估植入的3D打印仿生材料中的软骨形成,
通过募集内源性干细胞在骨骺损伤的兔模型中构建(目的3),和(2)
评估生长板软骨的3D打印仿生物在骨组织中实现纵向骨生长的能力。
兔骨骺损伤模型,植入后随访1年。在3年结束时,
R33阶段,我们希望已经证明,用3D打印的
生长板软骨的仿生学防止骨杆再形成并支持软骨形成,
最终在生长至骨骼成熟后转化为新骨。通过提供解决方案来恢复
正常的骨骼生长,这种生长板软骨的3D打印仿生有可能被转化为
诊所改善受影响儿童的生活质量。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Material properties and strain distribution patterns of bovine growth plate cartilage vary with anatomic location and depth.
- DOI:10.1016/j.jbiomech.2022.111013
- 发表时间:2022-03
- 期刊:
- 影响因子:2.4
- 作者:Fischenich, Kristine M.;Schneider, Stephanie E.;Neu, Corey P.;Payne, Karin A.;Ferguson, Virginia L.
- 通讯作者:Ferguson, Virginia L.
A 3D printed mimetic composite for the treatment of growth plate injuries in a rabbit model.
- DOI:10.1038/s41536-022-00256-1
- 发表时间:2022-10-19
- 期刊:
- 影响因子:7.2
- 作者:Yu, Yangyi;Fischenich, Kristine M.;Schoonraad, Sarah A.;Weatherford, Shane;Uzcategui, Asais Camila;Eckstein, Kevin;Muralidharan, Archish;Crespo-Cuevas, Victor;Rodriguez-Fontan, Francisco;Killgore, Jason P.;Li, Guangheng;McLeod, Robert R.;Miller, Nancy Hadley;Ferguson, Virginia L.;Bryant, Stephanie J.;Payne, Karin A.
- 通讯作者:Payne, Karin A.
The heterogeneous mechanical properties of adolescent growth plate cartilage: A study in rabbit.
- DOI:10.1016/j.jmbbm.2022.105102
- 发表时间:2022-04
- 期刊:
- 影响因子:3.9
- 作者:Eckstein, Kevin N.;Thomas, Stacey M.;Scott, Adrienne K.;Neu, Corey P.;Hadley-Miller, Nancy A.;Payne, Karin A.;Ferguson, Virginia L.
- 通讯作者:Ferguson, Virginia L.
Microscale Photopatterning of Through-thickness Modulus in a Monolithic and Functionally Graded 3D Printed Part.
- DOI:10.1002/smsc.202000017
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:A. C. Uzcategui;Callie I. Higgins;John E. Hergert;Andrew E. Tomaschke;Victor Crespo-Cuevas;V. Ferguson;S. Bryant;R. McLeod;J. Killgore
- 通讯作者:A. C. Uzcategui;Callie I. Higgins;John E. Hergert;Andrew E. Tomaschke;Victor Crespo-Cuevas;V. Ferguson;S. Bryant;R. McLeod;J. Killgore
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie J Bryant其他文献
Stephanie J Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie J Bryant', 18)}}的其他基金
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10378055 - 财政年份:2021
- 资助金额:
$ 36.51万 - 项目类别:
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10206869 - 财政年份:2021
- 资助金额:
$ 36.51万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10063721 - 财政年份:2020
- 资助金额:
$ 36.51万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10210394 - 财政年份:2020
- 资助金额:
$ 36.51万 - 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
- 批准号:
9611776 - 财政年份:2018
- 资助金额:
$ 36.51万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9926114 - 财政年份:2017
- 资助金额:
$ 36.51万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9246272 - 财政年份:2017
- 资助金额:
$ 36.51万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10612072 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10446482 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
Mechanically Stiff Hydrogels for Osteochondral Tissue Engineering
用于骨软骨组织工程的机械刚性水凝胶
- 批准号:
9321175 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 36.51万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 36.51万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 36.51万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 36.51万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 36.51万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant