Mapping protein dynamics and their origin at biomaterial surfaces in vivo

绘制体内生物材料表面的蛋白质动力学及其起源

基本信息

  • 批准号:
    10378055
  • 负责人:
  • 金额:
    $ 19.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Therapies to repair or regenerate damage to the musculoskeletal system often involve the implantation of synthetic materials to stabilize tissues or promote regrowth. However, synthetic materials induce a foreign body response (FBR), which can lead to adverse outcomes. Our ability to design effective therapeutic strategies to mitigate the FBR is hampered by an incomplete understanding of the molecular mechanisms that trigger the FBR. The current dogma of the FBR assumes that serum proteins adsorb to biomaterial surfaces and unfold, leading to irreversible adsorption and creating damage-associated molecular patterns (DAMPs) that initiate inflammation. Our recent studies suggest that this view is insufficient and instead that proteins interact with surfaces dynamically and that DAMPs may arise from multiple different sources. To this end, this proposal aims to test the hypothesis that the adsorption of proteins onto implanted biomaterials is dynamic (turning over continually and changing in time), and that the FBR is maintained by DAMPs derived from serum and by the continuous generation of DAMPs that are produced by recruited myeloid cells. Two specific aims were developed to test this hypothesis. Specific Aim #1 will determine the identity of surface-adsorbed proteins over time in the FBR using bioorthogonal tagging. This aim will incorporate the methionine (Met) analog azidohomoalanine to ubiquitously tag newly synthesized proteins at different times during the FBR in wildtype mice with implants. The tagged and untagged newly synthesized proteins will be quantified and the proteins identified with LC-MS/MS to determine the transient nature of the surface-adsorbed proteins. Specific Aim #2 will determine the origin of surface-adsorbed proteins and their identity in the FBR using cell-specific bioorthogonal tagging. This aim will use a recently created mouse line that has a point mutation in methionyl- tRNA synthetase (MetRS*) that enables cell-specific loading (via Cre drivers) of the Met analog azidonorleucine into newly synthesized proteins. Albumin-Cre and LysM-Cre drivers will be used to determine the origin of the adsorbed proteins from serum and myeloid cells, respectively. When combined with LC-MS/MS, the identity of the adsorbed proteins from each source will also be determined. Each aim will investigate silicone as a model implant, having a surface chemistry that is either hydrophobic (native surface) or hydrophilic (plasma-treated), to study the role of hydrophobicity on the dynamics of surface-adsorbed proteins. In addition, a subset of proteins from the LC-MS/MS results will be tested for their ability to activate macrophages in vitro and act as DAMPs. In summary, this exploratory project will utilize recently developed in vivo protein labeling techniques to answer fundamental questions about the events that trigger the FBR. Through this understanding, this project will generate new hypotheses and inform the rational design of biomaterials to control surface-adsorbed DAMPs. Long-term, our goal is to develop a biomaterial-based therapeutic intervention through which the FBR can be prevented with unprecedented control and precision.
修复或再生肌肉骨骼系统损伤的治疗通常涉及植入

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie J Bryant其他文献

Stephanie J Bryant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie J Bryant', 18)}}的其他基金

Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
  • 批准号:
    10206869
  • 财政年份:
    2021
  • 资助金额:
    $ 19.92万
  • 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
  • 批准号:
    10063721
  • 财政年份:
    2020
  • 资助金额:
    $ 19.92万
  • 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
  • 批准号:
    10210394
  • 财政年份:
    2020
  • 资助金额:
    $ 19.92万
  • 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
  • 批准号:
    9611776
  • 财政年份:
    2018
  • 资助金额:
    $ 19.92万
  • 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
  • 批准号:
    10112931
  • 财政年份:
    2017
  • 资助金额:
    $ 19.92万
  • 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
  • 批准号:
    9926114
  • 财政年份:
    2017
  • 资助金额:
    $ 19.92万
  • 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
  • 批准号:
    9246272
  • 财政年份:
    2017
  • 资助金额:
    $ 19.92万
  • 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
  • 批准号:
    10612072
  • 财政年份:
    2016
  • 资助金额:
    $ 19.92万
  • 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
  • 批准号:
    10446482
  • 财政年份:
    2016
  • 资助金额:
    $ 19.92万
  • 项目类别:
Mechanically Stiff Hydrogels for Osteochondral Tissue Engineering
用于骨软骨组织工程的机械刚性水凝胶
  • 批准号:
    9321175
  • 财政年份:
    2016
  • 资助金额:
    $ 19.92万
  • 项目类别:

相似海外基金

Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
  • 批准号:
    23H05448
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了