Antimicrobial mechanisms of action zinc oxide nanoparticles

氧化锌纳米粒子的抗菌作用机制

基本信息

  • 批准号:
    9385809
  • 负责人:
  • 金额:
    $ 19.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-23 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: Despite a decade of engineering advancements and clinical process improvements, 1 million healthcare- associated infections in the U.S. can be attributed to indwelling medical devices annually. Zinc oxide nanoparticles (ZnO-NPs) are one of the most promising emerging antimicrobials with potential to combat device related infection. ZnO-NPs are inexpensive, stable, and easy to prepare with broad antimicrobial spectrum and wide therapeutic window. However, the antimicrobial mechanism of action of ZnO-NPs remains elusive. This proposal is specifically motivated to better understand the mechanism of action of ZnO-NPs. Such understanding is necessary to guide the design of device coatings that preserve antibacterial function in vivo. Reactive oxygen species (ROS) generation or membrane disruption are hypothesized mechanisms of action. However the literature is inconsistent and our preliminary data suggests that these NP effects are not sufficient. We recently demonstrated that ZnO-NPs have shape-dependent, biomimetic, reversible, enzyme inhibition properties. The central research question for this career development grant is: To what extent does ZnO-NP behavior as an enzyme inhibitor contribute to antimicrobial activity? I have multidisciplinary training in medicine, engineering, and molecular biology that is well-suited to address this question. My ultimate career goal is to become a clinician-scientist. I plan to have a clinical interest in sepsis as it relates to indwelling medical devices and an independently funded research program focused on the development of novel biomaterials to resist microbial contamination and infection. This proposal was developed to solidify my expertise, formalize my research niche, and garner the resources for the next phase of career development. My specific career development objectives for the next four years are to: 1. Solidify my expertise in microbiology (including biofilm microbiology), microbial-surface interaction, nanoparticle technology, and translational research. 2. Master techniques in evaluating mechanisms of action of antimicrobial and anti-biofilm materials. 3. Generate sufficient preliminary data and publication record to obtain independent research funding. 4. Secure my niche as an expert in bacterial-nanomaterial interactions. 5. Obtain secondary appointment in the College of Engineering so that I can work with and mentor graduate students in their research and career development. I have assembled a mentorship team of experts co-localized at the University of Michigan North Campus Research Complex with experience in clinical medicine, microbiology, material science and engineering, and product development/commercialization. Together we have devised a highly-individualized, project-oriented training plan that includes regular mentorship meetings, formal didactic education, career development workshops, and presentation at local and national conferences. Partnered with this career development plan is an innovative research plan. By synthesizing ZnO-NPs that are identical in surface chemistry but differ only in shape we can control the potential for enzyme inhibition and address the central research question above. Using these novel preparations, we will test the hypothesis: Pyramidal ZnO-NPs inhibit a cohort of bacterial enzymes which are critical to survival. Our research specific aims are to: 1. Quantify aerobic metabolism, membrane integrity, and microbial death in a commonly isolated medical device pathogen (i.e., Staphylococcus aureus) as a function of exposure time to spherical vs pyramidal ZnO-NPs. 2. Identify genes involved in enzyme inhibition by ZnO-NPs using a mariner transposon mutant library of S. aureus. 3. Determine the subset of S. aureus proteins that specifically complex with ZnO-NPs in a shape- dependent manner by 2D-gel electrophoresis followed by liquid chromatography paired with tandem mass spectroscopy (LC-MS/MS).
项目总结: 尽管经过十年的技术进步和临床流程的改进,100万医疗保健- 在美国,相关感染可归因于每年留置医疗器械。氧化锌 纳米氧化锌是最有潜力的新型抗菌剂之一。 设备相关感染。氧化锌纳米粒子价格低廉,稳定性好,易于制备,具有广泛的抗菌性 光谱和宽广的治疗窗口。然而,纳米氧化锌的抗菌作用机制仍然存在。 难以捉摸。这项建议的目的是为了更好地了解氧化锌纳米颗粒的作用机制。 这样的理解对于指导设备涂层的设计以保持抗菌功能是必要的 活着。活性氧物种(ROS)的产生或膜的破坏是假想的 行动。然而,文献并不一致,我们的初步数据表明,这些NP效应并不是 足够了。我们最近证实了氧化锌纳米颗粒具有形状依赖性、仿生性、可逆性、酶 抑制特性。这项职业发展基金的中心研究问题是:在多大程度上 氧化锌-纳米粒作为一种酶抑制剂的行为是否有助于抗菌活性? 我在医学、工程学和分子生物学方面接受过多学科的培训,这非常适合于 这个问题。我的最终职业目标是成为一名临床医生兼科学家。我计划在临床上对 脓毒症与留置医疗器械和一个独立资助的研究计划有关,重点是 抗微生物污染和感染的新型生物材料的开发。这项提议是 开发的目的是巩固我的专业知识,规范我的研究领域,并为下一阶段获得资源 关于职业发展的。我未来四年的具体职业发展目标是: 1.巩固我在微生物学(包括生物膜微生物学)、微生物-表面相互作用、 纳米粒子技术和转化研究。 2.掌握抗菌、抗生物被膜材料作用机理的评价技术。 3.生成足够的初步数据和出版记录,以获得独立研究资金。 4.确保我作为细菌-纳米材料相互作用专家的利基地位。 5.在工程学院获得二级职位,这样我就可以和我一起工作并指导 研究生在他们的研究和职业发展中。 我在密歇根大学北校区组建了一个由专家组成的导师团队 具有临床医学、微生物学、材料科学和工程经验的研究综合体,以及 产品开发/商业化。我们共同设计了一个高度个性化、以项目为导向的 培训计划,包括定期导师会议、正式教学教育、职业发展 讲习班,以及在地方和国家会议上的发言。 与这一职业发展计划合作的是一项创新的研究计划。通过合成氧化锌纳米颗粒 表面化学相同但只是形状不同我们可以控制酶抑制的潜力和 回答上面的中心研究问题。使用这些新的准备,我们将检验这一假设: 金字塔状的氧化锌纳米颗粒抑制了一组对生存至关重要的细菌酶。我们的研究 具体目标是: 1.量化常见隔离医疗系统中的有氧代谢、膜完整性和微生物死亡 设备病原体(即金黄色葡萄球菌)与球形和金字塔接触时间的关系 纳米氧化锌。 2.利用水手转座子突变体库筛选与氧化锌纳米粒抑制酶相关的基因。 金黄色葡萄球菌。 3.确定金黄色葡萄球菌蛋白亚群与氧化锌-纳米粒形成特异性络合物- 2D-凝胶电泳液相色谱串联依赖方式的建立 质谱学(LC-MS/MS)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J SCOTT VANEPPS其他文献

J SCOTT VANEPPS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J SCOTT VANEPPS', 18)}}的其他基金

Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10440832
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10620335
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Antimicrobial mechanisms of action zinc oxide nanoparticles
氧化锌纳米粒子的抗菌作用机制
  • 批准号:
    9918245
  • 财政年份:
    2017
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    6998169
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    7107897
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了