Antimicrobial mechanisms of action zinc oxide nanoparticles

氧化锌纳米粒子的抗菌作用机制

基本信息

  • 批准号:
    9385809
  • 负责人:
  • 金额:
    $ 19.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-23 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: Despite a decade of engineering advancements and clinical process improvements, 1 million healthcare- associated infections in the U.S. can be attributed to indwelling medical devices annually. Zinc oxide nanoparticles (ZnO-NPs) are one of the most promising emerging antimicrobials with potential to combat device related infection. ZnO-NPs are inexpensive, stable, and easy to prepare with broad antimicrobial spectrum and wide therapeutic window. However, the antimicrobial mechanism of action of ZnO-NPs remains elusive. This proposal is specifically motivated to better understand the mechanism of action of ZnO-NPs. Such understanding is necessary to guide the design of device coatings that preserve antibacterial function in vivo. Reactive oxygen species (ROS) generation or membrane disruption are hypothesized mechanisms of action. However the literature is inconsistent and our preliminary data suggests that these NP effects are not sufficient. We recently demonstrated that ZnO-NPs have shape-dependent, biomimetic, reversible, enzyme inhibition properties. The central research question for this career development grant is: To what extent does ZnO-NP behavior as an enzyme inhibitor contribute to antimicrobial activity? I have multidisciplinary training in medicine, engineering, and molecular biology that is well-suited to address this question. My ultimate career goal is to become a clinician-scientist. I plan to have a clinical interest in sepsis as it relates to indwelling medical devices and an independently funded research program focused on the development of novel biomaterials to resist microbial contamination and infection. This proposal was developed to solidify my expertise, formalize my research niche, and garner the resources for the next phase of career development. My specific career development objectives for the next four years are to: 1. Solidify my expertise in microbiology (including biofilm microbiology), microbial-surface interaction, nanoparticle technology, and translational research. 2. Master techniques in evaluating mechanisms of action of antimicrobial and anti-biofilm materials. 3. Generate sufficient preliminary data and publication record to obtain independent research funding. 4. Secure my niche as an expert in bacterial-nanomaterial interactions. 5. Obtain secondary appointment in the College of Engineering so that I can work with and mentor graduate students in their research and career development. I have assembled a mentorship team of experts co-localized at the University of Michigan North Campus Research Complex with experience in clinical medicine, microbiology, material science and engineering, and product development/commercialization. Together we have devised a highly-individualized, project-oriented training plan that includes regular mentorship meetings, formal didactic education, career development workshops, and presentation at local and national conferences. Partnered with this career development plan is an innovative research plan. By synthesizing ZnO-NPs that are identical in surface chemistry but differ only in shape we can control the potential for enzyme inhibition and address the central research question above. Using these novel preparations, we will test the hypothesis: Pyramidal ZnO-NPs inhibit a cohort of bacterial enzymes which are critical to survival. Our research specific aims are to: 1. Quantify aerobic metabolism, membrane integrity, and microbial death in a commonly isolated medical device pathogen (i.e., Staphylococcus aureus) as a function of exposure time to spherical vs pyramidal ZnO-NPs. 2. Identify genes involved in enzyme inhibition by ZnO-NPs using a mariner transposon mutant library of S. aureus. 3. Determine the subset of S. aureus proteins that specifically complex with ZnO-NPs in a shape- dependent manner by 2D-gel electrophoresis followed by liquid chromatography paired with tandem mass spectroscopy (LC-MS/MS).
项目概要: 尽管经过十年的工程进步和临床流程改进,100万医疗保健- 在美国,每年的相关感染可归因于留置医疗设备。氧化锌 纳米颗粒(ZnO-NPs)是最有前途的新兴抗菌剂之一, 器械相关感染。ZnO纳米粒子价格便宜,稳定,易于制备,具有广泛的抗菌性, 治疗范围广。然而,ZnO纳米颗粒的抗微生物作用机制仍然存在, 难以捉摸。该提议的目的是更好地理解ZnO纳米颗粒的作用机制。 这种理解对于指导器械涂层的设计是必要的, vivo.活性氧(ROS)的产生或膜破坏是细胞凋亡的假设机制。 行动上然而,文献是不一致的,我们的初步数据表明,这些NP效应不是 足够了。我们最近证明,氧化锌纳米粒子具有形状依赖性,仿生,可逆,酶 抑制性能这项职业发展补助金的中心研究问题是: 氧化锌纳米粒子作为酶抑制剂的行为有助于抗菌活性? 我在医学,工程学和分子生物学方面受过多学科的培训,非常适合解决 这个问题我的最终职业目标是成为一名临床科学家。我打算在临床上 败血症,因为它涉及到留置医疗器械和一个独立资助的研究计划,重点是 开发新型生物材料以抵抗微生物污染和感染。这一提议遭到 我的发展是为了巩固我的专业知识,使我的研究利基正规化,并为下一阶段积累资源 职业发展。我未来四年的职业发展目标是: 1.巩固我在微生物学(包括生物膜微生物学),微生物表面相互作用, 纳米粒子技术和转化研究。 2.掌握评估抗菌和抗生物膜材料作用机制的技术。 3.产生足够的初步数据和出版记录,以获得独立的研究资金。 4.确保我作为细菌纳米材料相互作用专家的地位。 5.获得工程学院的二级任命,以便我可以与之合作并指导 研究生在他们的研究和职业发展。 我已经组建了一个指导小组的专家共同定位在密歇根大学北校区 在临床医学、微生物学、材料科学和工程方面具有丰富经验的研究综合体, 产品开发/商业化。我们共同设计了一个高度个性化的,以项目为导向的 培训计划,包括定期的导师会议、正式的教学教育、职业发展 讲习班,并在地方和国家会议上作介绍。 与这个职业发展计划合作的是一个创新的研究计划。通过合成ZnO-NP, 在表面化学上相同,但仅在形状上不同,我们可以控制酶抑制的潜力, 解决上述中心研究问题。使用这些新的制剂,我们将测试假设: 金字塔状ZnO-NP抑制对存活至关重要的一组细菌酶。我们的研究 具体目标是: 1.量化有氧代谢,膜完整性,和微生物死亡,在一个共同的隔离医疗 设备病原体(即,金黄色葡萄球菌)作为球形与锥形暴露时间的函数 ZnO纳米颗粒 2.使用Mariner转座子突变体文库鉴定ZnO纳米颗粒对酶抑制作用的相关基因 S.金黄色。 3.确定S的子集。与ZnO-NP特异性复合的金黄色蛋白质的形状- 通过2D凝胶电泳,随后通过串联液相色谱配对 质谱(LC-MS/MS)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J SCOTT VANEPPS其他文献

J SCOTT VANEPPS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J SCOTT VANEPPS', 18)}}的其他基金

Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10440832
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10620335
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Antimicrobial mechanisms of action zinc oxide nanoparticles
氧化锌纳米粒子的抗菌作用机制
  • 批准号:
    9918245
  • 财政年份:
    2017
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    6998169
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    7107897
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了