Antimicrobial mechanisms of action zinc oxide nanoparticles

氧化锌纳米粒子的抗菌作用机制

基本信息

  • 批准号:
    9918245
  • 负责人:
  • 金额:
    $ 19.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-23 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: Despite a decade of engineering advancements and clinical process improvements, 1 million healthcare- associated infections in the U.S. can be attributed to indwelling medical devices annually. Zinc oxide nanoparticles (ZnO-NPs) are one of the most promising emerging antimicrobials with potential to combat device related infection. ZnO-NPs are inexpensive, stable, and easy to prepare with broad antimicrobial spectrum and wide therapeutic window. However, the antimicrobial mechanism of action of ZnO-NPs remains elusive. This proposal is specifically motivated to better understand the mechanism of action of ZnO-NPs. Such understanding is necessary to guide the design of device coatings that preserve antibacterial function in vivo. Reactive oxygen species (ROS) generation or membrane disruption are hypothesized mechanisms of action. However the literature is inconsistent and our preliminary data suggests that these NP effects are not sufficient. We recently demonstrated that ZnO-NPs have shape-dependent, biomimetic, reversible, enzyme inhibition properties. The central research question for this career development grant is: To what extent does ZnO-NP behavior as an enzyme inhibitor contribute to antimicrobial activity? I have multidisciplinary training in medicine, engineering, and molecular biology that is well-suited to address this question. My ultimate career goal is to become a clinician-scientist. I plan to have a clinical interest in sepsis as it relates to indwelling medical devices and an independently funded research program focused on the development of novel biomaterials to resist microbial contamination and infection. This proposal was developed to solidify my expertise, formalize my research niche, and garner the resources for the next phase of career development. My specific career development objectives for the next four years are to: 1. Solidify my expertise in microbiology (including biofilm microbiology), microbial-surface interaction, nanoparticle technology, and translational research. 2. Master techniques in evaluating mechanisms of action of antimicrobial and anti-biofilm materials. 3. Generate sufficient preliminary data and publication record to obtain independent research funding. 4. Secure my niche as an expert in bacterial-nanomaterial interactions. 5. Obtain secondary appointment in the College of Engineering so that I can work with and mentor graduate students in their research and career development. I have assembled a mentorship team of experts co-localized at the University of Michigan North Campus Research Complex with experience in clinical medicine, microbiology, material science and engineering, and product development/commercialization. Together we have devised a highly-individualized, project-oriented training plan that includes regular mentorship meetings, formal didactic education, career development workshops, and presentation at local and national conferences. Partnered with this career development plan is an innovative research plan. By synthesizing ZnO-NPs that are identical in surface chemistry but differ only in shape we can control the potential for enzyme inhibition and address the central research question above. Using these novel preparations, we will test the hypothesis: Pyramidal ZnO-NPs inhibit a cohort of bacterial enzymes which are critical to survival. Our research specific aims are to: 1. Quantify aerobic metabolism, membrane integrity, and microbial death in a commonly isolated medical device pathogen (i.e., Staphylococcus aureus) as a function of exposure time to spherical vs pyramidal ZnO-NPs. 2. Identify genes involved in enzyme inhibition by ZnO-NPs using a mariner transposon mutant library of S. aureus. 3. Determine the subset of S. aureus proteins that specifically complex with ZnO-NPs in a shape- dependent manner by 2D-gel electrophoresis followed by liquid chromatography paired with tandem mass spectroscopy (LC-MS/MS).
项目总结:

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Culture-free bacterial detection and identification from blood with rapid, phenotypic, antibiotic susceptibility testing.
  • DOI:
    10.1038/s41598-018-21520-9
  • 发表时间:
    2018-02-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shi X;Kadiyala U;VanEpps JS;Yau ST
  • 通讯作者:
    Yau ST
Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity.
  • DOI:
    10.1002/chir.23225
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Feng W;Kadiyala U;Yan J;Wang Y;DiRita VJ;VanEpps JS;Kotov NA
  • 通讯作者:
    Kotov NA
Improved diagnostic prediction of the pathogenicity of bloodstream isolates of Staphylococcus epidermidis.
  • DOI:
    10.1371/journal.pone.0241457
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    VanAken SM;Newton D;VanEpps JS
  • 通讯作者:
    VanEpps JS
Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature.
  • DOI:
    10.2174/1381612824666180219130659
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kadiyala U;Kotov NA;VanEpps JS
  • 通讯作者:
    VanEpps JS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J SCOTT VANEPPS其他文献

J SCOTT VANEPPS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J SCOTT VANEPPS', 18)}}的其他基金

Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10440832
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10620335
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Antimicrobial mechanisms of action zinc oxide nanoparticles
氧化锌纳米粒子的抗菌作用机制
  • 批准号:
    9385809
  • 财政年份:
    2017
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    6998169
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    7107897
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了