Defining human kinase-substrate networks and their dynamic regulation
定义人类激酶底物网络及其动态调节
基本信息
- 批准号:9456951
- 负责人:
- 金额:$ 34.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAuxinsBindingBiological ProcessBiologyCell LineCellsCentriolesChemicalsCytokinesisDNA DamageDiabetes MellitusDiseaseDrug resistanceEmerging TechnologiesEnzymesFamilyFamily memberG1 PhaseGene DeletionGene ExpressionGoalsHalf-LifeHourHumanIn VitroIndividualKnowledgeLabelMalignant NeoplasmsMass Spectrum AnalysisMethodsMitosisMitoticMolecular TargetMutationNerve DegenerationOncogenesPLK1 genePathway interactionsPharmacotherapyPhosphorylationPhosphorylation SitePhosphotransferasesPolo-Box DomainPost-Translational Protein ProcessingProcessProteinsProteomicsRNA InterferenceRecoveryRegulationResearchResearch PersonnelSignal PathwaySignal TransductionSiteSubstrate InteractionTestingTimeTumor Suppressor ProteinsYeastsanalogbasechemical geneticsclinical effectclinically relevantexperimental studygenetic approachgenome sequencinghuman diseaseinhibitor/antagonistinterestmembermutantnanomolaroverexpressionphosphoproteomicsprotein degradationresponsesmall moleculesmall molecule inhibitor
项目摘要
PROJECT SUMMARY
Protein phosphorylation is an essential post-translational modification (PTM) that controls most biological
processes. More than three-quarters of all proteins are phosphorylated at one or more sites in human cells.
Systematic genome sequencing, gene expression and RNAi studies have implicated deregulation of kinase
function in many human diseases, including cancer, diabetes, and neurodegeneration. However, such
approaches do not reveal specific signaling pathways and molecular targets. Thus, there is an unmet need for
the systematic interrogation of human kinase-substrate relationships. The long-term goal of our research is to
decipher kinase signaling in basic biology and disease. To accomplish this, we have developed and applied
quantitative phosphoproteomics strategies to connect specific kinases to their substrates, including for Polo-
like kinase 1 (Plk1). Plk1 is the founding member of the Plk family and is conserved from yeast to humans.
Plk1 is an essential regulator of recovery from DNA damage and mitotic entry, mitotic progression and
cytokinesis, and is frequently overexpressed in cancer. While Plk1 is a bona fide oncogene, Plk2 and Plk3 act
as tumor suppressors, protect cells against DNA damage, and are required for other G1 and S-phase
processes, although the mechanisms that underlie these functions are largely unknown. Traditional strategies
to selectively study kinase function such as gene deletion, depletion, or overexpression alter kinase abundance
on a time scale of hours to days which often precludes assignment of direct kinase substrates. Elegant
chemical genetics approaches that introduce mutations into the conserved catalytic kinase domain to render
them ATP analog-sensitive have been implemented to overcome the general lack of selective inhibitors and
the temporal control problem. However, these mutations often reduce kinase activity and stability, limiting the
universal implementation of this approach. Thus, new strategies are needed for connecting kinases and their
substrates. To address this gap in capability, we propose to establish a general quantitative chemical
proteomics strategy to enable the identification of specific kinase substrates. Inducible protein degradation is
an emerging technology for directly manipulating protein abundance. We hypothesize that the combination of
inducible, rapid protein degradation (< 10 min half-life) and mass spectrometry based proteomics is a viable
strategy for the identification of specific kinase substrates and elucidation of phosphorylation signaling
networks of closely related enzymes. In this proposal, we provide a blueprint for comprehensive studies of
kinase–substrate relationships on a kinome-wide level. This is pivotal for mapping cellular signaling pathways,
identifying kinase pathway reprogramming upon disruption by mutations or drug treatment and resistance, and
determining off-target effects of clinically relevant inhibitors. More than half of the human kinome is un- or
under-characterized; experiments outlined here represent a roadmap for filling this gap in knowledge.
项目概要
蛋白质磷酸化是一种重要的翻译后修饰 (PTM),可控制大多数生物
流程。超过四分之三的蛋白质在人体细胞的一个或多个位点被磷酸化。
系统的基因组测序、基因表达和 RNAi 研究表明激酶的失调
在许多人类疾病中发挥作用,包括癌症、糖尿病和神经退行性疾病。然而,这样的
方法没有揭示特定的信号传导途径和分子靶标。因此,存在未满足的需求
对人类激酶-底物关系的系统询问。我们研究的长期目标是
破译基础生物学和疾病中的激酶信号传导。为了实现这一目标,我们开发并应用了
将特定激酶与其底物连接的定量磷酸化蛋白质组学策略,包括 Polo-
如激酶 1 (Plk1)。 Plk1 是 Plk 家族的创始成员,从酵母到人类都是保守的。
Plk1 是 DNA 损伤恢复和有丝分裂进入、有丝分裂进展和
胞质分裂,并且在癌症中经常过度表达。虽然 Plk1 是真正的癌基因,但 Plk2 和 Plk3 起作用
作为肿瘤抑制因子,保护细胞免受 DNA 损伤,并且是其他 G1 和 S 期所需的
尽管这些功能背后的机制很大程度上是未知的。传统策略
选择性研究激酶功能,例如基因缺失、耗尽或过度表达改变激酶丰度
在数小时至数天的时间范围内,这通常会妨碍直接激酶底物的分配。优雅的
化学遗传学方法将突变引入保守的催化激酶结构域以呈现
它们对 ATP 类似物敏感,以克服普遍缺乏选择性抑制剂的问题,
时间控制问题。然而,这些突变通常会降低激酶活性和稳定性,从而限制了
普遍实施这一方法。因此,需要新的策略来连接激酶及其
基材。为了解决这一能力差距,我们建议建立一个通用的定量化学
蛋白质组学策略能够识别特定的激酶底物。诱导蛋白降解是
一种直接操纵蛋白质丰度的新兴技术。我们假设组合
可诱导的、快速的蛋白质降解(< 10 分钟半衰期)和基于质谱的蛋白质组学是一种可行的方法
识别特定激酶底物和阐明磷酸化信号传导的策略
密切相关的酶网络。在本提案中,我们提供了全面研究的蓝图
激酶组水平上的激酶-底物关系。这对于绘制细胞信号通路至关重要,
识别因突变或药物治疗和耐药性而破坏的激酶途径重编程,以及
确定临床相关抑制剂的脱靶效应。超过一半的人类激酶组是非或
特征不足;这里概述的实验代表了填补这一知识空白的路线图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott A. Gerber其他文献
Merging single-track location Elastographic imaging with the frequency shift method improves shear wave attenuation measurements
将单轨位置弹性成像与频移方法相结合可改善剪切波衰减测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.5
- 作者:
Reem Mislati;Katia T. Iliza;Scott A. Gerber;Marvin M. Doyley - 通讯作者:
Marvin M. Doyley
Pulsed Terahertz Time Domain Spectroscopy for Evaluating Treatment Efficacy: Initial Validation in Monitoring Pancreatic Ductal Adenocarcinoma
用于评估治疗效果的脉冲太赫兹时域光谱:监测胰腺导管腺癌的初步验证
- DOI:
10.1109/irmmw-thz57677.2023.10299002 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
D. Chakraborty;Bradley N. Mills;Jing Cheng;I. Komissarov;Scott A. Gerber;Roman Sobolewski - 通讯作者:
Roman Sobolewski
Whole mount immunofluorescence of the human placenta
- DOI:
10.1016/j.placenta.2015.01.390 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Shawn P. Murphy;Meghan E. Bushway;Paula Zozzaro-Smith;Ian D. Perry;Scott A. Gerber;Richard K. Miller;Edith M. Lord - 通讯作者:
Edith M. Lord
Metabolic phosphatase moonlights for proteins
代谢磷酸酶具有蛋白质的双重功能
- DOI:
10.1038/s41556-022-00993-x - 发表时间:
2022-10-20 - 期刊:
- 影响因子:19.100
- 作者:
Scott A. Gerber;Arminja N. Kettenbach - 通讯作者:
Arminja N. Kettenbach
Scott A. Gerber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott A. Gerber', 18)}}的其他基金
Dartmouth Training Program in Quantitative Cancer Research
达特茅斯定量癌症研究培训计划
- 批准号:
10555367 - 财政年份:2023
- 资助金额:
$ 34.02万 - 项目类别:
Proteomics approaches for illuminating the functions of the dark kinases Nek6, Nek7 & Nek9
阐明暗激酶 Nek6、Nek7 功能的蛋白质组学方法
- 批准号:
10216469 - 财政年份:2021
- 资助金额:
$ 34.02万 - 项目类别:
Activity based profiling of Phosphoprotein phosphatases in cancer using mass spectrometry-based proteomics
使用基于质谱的蛋白质组学对癌症中磷蛋白磷酸酶进行基于活性的分析
- 批准号:
10207537 - 财政年份:2019
- 资助金额:
$ 34.02万 - 项目类别:
Activity based profiling of Phosphoprotein phosphatases in cancer using mass spectrometry-based proteomics
使用基于质谱的蛋白质组学对癌症中磷蛋白磷酸酶进行基于活性的分析
- 批准号:
9917701 - 财政年份:2019
- 资助金额:
$ 34.02万 - 项目类别:
Defining human kinase-substrate networks and their dynamic regulation
定义人类激酶底物网络及其动态调节
- 批准号:
9752607 - 财政年份:2017
- 资助金额:
$ 34.02万 - 项目类别:
Administrative supplement for Fusion Lumos mass spectrometer
Fusion Lumos 质谱仪的行政补充
- 批准号:
9708201 - 财政年份:2017
- 资助金额:
$ 34.02万 - 项目类别:
Defining human kinase-substrate networks and their dynamic regulation
定义人类激酶底物网络及其动态调节
- 批准号:
9980956 - 财政年份:2017
- 资助金额:
$ 34.02万 - 项目类别:
LC-Orbitrap MS/MS System for shotgun Proteomics at Dartmouth
达特茅斯用于鸟枪蛋白质组学的 LC-Orbitrap MS/MS 系统
- 批准号:
8447223 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
相似海外基金
Modulation of Endogenous Auxins and Detoxification of Herbicidal Analogs in Plants by Gretchen Hagen 3 Enzymes
Gretchen Hagen 3 酶对植物内源生长素的调节和除草类似物的解毒
- 批准号:
558113-2021 - 财政年份:2022
- 资助金额:
$ 34.02万 - 项目类别:
Postdoctoral Fellowships
Modulation of Endogenous Auxins and Detoxification of Herbicidal Analogs in Plants by Gretchen Hagen 3 Enzymes
Gretchen Hagen 3 酶对植物内源生长素的调节和除草类似物的解毒
- 批准号:
558113-2021 - 财政年份:2021
- 资助金额:
$ 34.02万 - 项目类别:
Postdoctoral Fellowships
Study on the physiological roles of naturally occurring auxins in plants with distinct transport characteristics
具有独特运输特性的植物中天然存在的生长素的生理作用研究
- 批准号:
18H02457 - 财政年份:2018
- 资助金额:
$ 34.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Next generation auxins and anti-auxins : principles for binding and design
下一代生长素和抗生长素:结合和设计原理
- 批准号:
BB/L010623/1 - 财政年份:2014
- 资助金额:
$ 34.02万 - 项目类别:
Research Grant
Next generation auxins and anti-auxins : principles for binding and design
下一代生长素和抗生长素:结合和设计原理
- 批准号:
BB/L009366/1 - 财政年份:2014
- 资助金额:
$ 34.02万 - 项目类别:
Research Grant
Distinct characteristics of two natural auxins in plants
植物中两种天然生长素的独特特征
- 批准号:
24370027 - 财政年份:2012
- 资助金额:
$ 34.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploration of chemical probes for investigation of oxidative metabolism of auxins
生长素氧化代谢化学探针的探索
- 批准号:
22510228 - 财政年份:2010
- 资助金额:
$ 34.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Subcellular Basis of Plant Tissue Sensitivity to Auxins
RUI:植物组织对生长素敏感性的亚细胞基础
- 批准号:
9096239 - 财政年份:1990
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
RUI: Subcellular Basis of Plant Tissue Sensitivity to Auxins
RUI:植物组织对生长素敏感性的亚细胞基础
- 批准号:
9096327 - 财政年份:1990
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Synthesis of Fungal potent auxins, accremoauxins, and their applied study on initiation and propagation of frail calli of conifers.
真菌强效生长素、accremoauxins的合成及其在针叶树脆弱愈伤组织引发和繁殖中的应用研究。
- 批准号:
02660128 - 财政年份:1990
- 资助金额:
$ 34.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




