Validating engineered hiPSC-derived cardiomyocytes as model cells

验证工程化 hiPSC 衍生心肌细胞作为模型细胞

基本信息

  • 批准号:
    9678119
  • 负责人:
  • 金额:
    $ 18.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION: Cardiovascular disease remains the #1 killer in the developed world. Loss of cardiomyocytes due to myocardial infarction or chronic apoptosis can lead to heart failure, affecting more than 23 million people worldwide. We currently lack a nuanced understanding of how the mechanisms of dysfunction of heart disease are linked to contractile phenotypes at the protein, sarcomere and cellular levels. Unfortunately, the scarcity of human heart tissue and the inability to maintain mature, primary cardiomyocytes in vitro has hindered investigation of the basic mechanisms of cardiotoxicity and human heart disease and physiology of cardiomyocytes. Conversely, human induced pluripotent stem cell-derived cardiomyocytes are readily available (even commercially), can be maintained for months in culture, and frozen for future use. A crucial motivation for this work is the divergence between human cardiomyocytes and animal model cardiomyocytes in physiology, structural composition, and fundamental biology. These differences are particularly acute when screening cardiotoxicity of drugs or treatments for use in humans. Human induced pluripotent stem cell-derived cardiomyocytes seem to hold great promise in this regard, but current protocols for deriving cells yield heterogeneous populations in terms of structure, function, contractility, and other crucial parameters. In this application, we seek to establish a high-risk, high-reward paradigm shift: that quantitative analysis of myofibril organization in engineered single cardiomyocytes with physiological shape and sarcomere organization will empower researchers to overcome the heterogeneities observed in human induced pluripotent stem cell-derived cardiomyocyte populations, positioning the contractile behavior and myofibril organization of human induced pluripotent stem cell-derived cardiomyocyte as models of cardiotoxicity and diseases of the myocardium (cardiomyopathies). We will engineer the morphology and subcellular myofibril alignment of human induced pluripotent stem cell-derived cardiomyocytes through their interface with mechanically tuned cell culture environments. By providing in situ non-destructive functional assessment, while driving maturity in single iPSC-cardiomyocytes, we will enable quantitative studies of contractility, work and power in terminally differentiated cardiomyocytes. These models of matured stem cell-derived cardiomyocytes also have the potential to avoid the problems of poor long-term survival of primary cardiomyocyte models in vitro, to reduce our reliance on animal models and to avoid their known differences from human cells. Our proposed project provides methods and systems for sustaining stem cell-derived cardiomyocytes in biomimetic culture conditions along with non-destructive contractility assays required to assess the function of these cells before and after interventions to rescue healthy phenotypes. We further aim to deploy these model systems and methods to characterize the biophysics of mutations causing heritable cardiomyopathies. We seek to demonstrate models suitable for future translation towards high- throughput testing of therapies with patient specificity.
 心血管疾病仍然是发达国家的头号杀手。由于心肌梗死或慢性细胞凋亡导致的心肌细胞损失可导致心力衰竭,影响全球超过2300万人。我们目前缺乏对心脏病功能障碍的机制如何在蛋白质,肌节和细胞水平上与收缩表型联系起来的微妙理解。遗憾的是,人类心脏组织的缺乏和无法在体外维持成熟的原代心肌细胞阻碍了对心脏毒性和人类心脏病的基本机制以及心肌细胞生理学的研究。相反,人诱导多能干细胞衍生的心肌细胞是容易获得的(甚至是商业上的),可以在培养中维持数月,并冷冻以备将来使用。这项工作的一个重要动机是人类心肌细胞和动物模型心肌细胞在生理学,结构组成和基础生物学方面的差异。当筛选用于人类的药物或治疗的心脏毒性时,这些差异特别严重。人诱导多能干细胞衍生的心肌细胞似乎在这方面有很大的希望,但目前的细胞衍生方案产生异质群体, 结构、功能、收缩性和其他关键参数。在这个应用程序中,我们寻求建立一个高风险,高回报的范式转变:在具有生理形状和肌节组织的工程化单个心肌细胞中肌原纤维组织的定量分析将使研究人员能够克服在人诱导多能干细胞衍生的心肌细胞群体中观察到的异质性,将人诱导多能干细胞衍生的心肌细胞的收缩行为和肌原纤维组织定位为心脏毒性和心肌疾病的模型(心肌病)。我们将通过与机械调谐的细胞培养环境的界面,设计人类诱导多能干细胞衍生的心肌细胞的形态和亚细胞肌原纤维排列。通过提供原位非破坏性功能评估,同时推动单个iPSC心肌细胞的成熟,我们将能够定量研究终末分化心肌细胞的收缩力,工作和功率。这些成熟的干细胞衍生的心肌细胞模型也有可能避免体外原代心肌细胞模型长期存活不良的问题,减少我们对动物模型的依赖,并避免它们与人类细胞的已知差异。我们提出的项目提供了用于在仿生培养条件下维持干细胞衍生的心肌细胞的方法和系统,沿着非破坏性收缩性测定,所述非破坏性收缩性测定用于评估这些细胞在干预之前和之后的功能以拯救健康表型。我们进一步的目标是部署这些模型系统和方法来表征导致遗传性心肌病的突变的生物物理学。我们试图证明模型适合于未来的翻译向高通量测试的治疗与患者的特异性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beth L Pruitt其他文献

Beth L Pruitt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beth L Pruitt', 18)}}的其他基金

Effect of Microgravity on Drug Responses Using Engineered Heart Tissues
微重力对工程心脏组织药物反应的影响
  • 批准号:
    10670018
  • 财政年份:
    2022
  • 资助金额:
    $ 18.46万
  • 项目类别:
Predoctoral Training Program in Quantitative Mechanobiology
定量力学生物学博士前培训项目
  • 批准号:
    10439646
  • 财政年份:
    2021
  • 资助金额:
    $ 18.46万
  • 项目类别:
Predoctoral Training Program in Quantitative Mechanobiology
定量力学生物学博士前培训项目
  • 批准号:
    10626763
  • 财政年份:
    2021
  • 资助金额:
    $ 18.46万
  • 项目类别:
Predoctoral Training Program in Quantitative Mechanobiology
定量力学生物学博士前培训项目
  • 批准号:
    10207240
  • 财政年份:
    2021
  • 资助金额:
    $ 18.46万
  • 项目类别:
Effect of Microgravity on Drug Responses Using Engineered Heart Tissues
微重力对工程心脏组织药物反应的影响
  • 批准号:
    10173394
  • 财政年份:
    2018
  • 资助金额:
    $ 18.46万
  • 项目类别:
Effect of Microgravity on Drug Responses Using Engineered Heart Tissues
微重力对工程心脏组织药物反应的影响
  • 批准号:
    10239266
  • 财政年份:
    2018
  • 资助金额:
    $ 18.46万
  • 项目类别:
Validating engineered hiPSC-derived cardiomyocytes as model cells
验证工程化 hiPSC 衍生心肌细胞作为模型细胞
  • 批准号:
    9030330
  • 财政年份:
    2016
  • 资助金额:
    $ 18.46万
  • 项目类别:
Force Clamp Systems for Evaluation of Mechanotransduction
用于评估机械传导的力夹系统
  • 批准号:
    7630592
  • 财政年份:
    2007
  • 资助金额:
    $ 18.46万
  • 项目类别:
Force Clamp Systems for Evaluation of Mechanotransduction
用于评估机械传导的力夹系统
  • 批准号:
    8147944
  • 财政年份:
    2007
  • 资助金额:
    $ 18.46万
  • 项目类别:
Force Clamp Systems for Evaluation of Mechanotransduction
用于评估机械传导的力夹系统
  • 批准号:
    7465346
  • 财政年份:
    2007
  • 资助金额:
    $ 18.46万
  • 项目类别:

相似国自然基金

重复荷载作用下ECC材料的疲劳性能及力学模型研究
  • 批准号:
    51408487
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Continuing Grant
Laser Engineered Surfaces/Interfaces for Advanced Batteries
用于先进电池的激光工程表面/界面
  • 批准号:
    EP/Y036727/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Standard Grant
CAREER: Epigenetic Regulation of Gene Expression in Engineered Prokaryotes
职业:工程原核生物基因表达的表观遗传调控
  • 批准号:
    2338573
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Continuing Grant
Evaluation and optimisation of new engineered human human apoferritins: protein nanocages for targeted drug delivery and intracellular cargo release
新型工程人类脱铁铁蛋白的评估和优化:用于靶向药物输送和细胞内货物释放的蛋白质纳米笼
  • 批准号:
    BB/Y008200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Research Grant
Engineered Genetic Control Systems for Advanced Therapeutics
用于先进治疗的工程基因控制系统
  • 批准号:
    BB/Y008545/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Research Grant
A novel precision-engineered microfluidic chip for wear particle research
一种用于磨损颗粒研究的新型精密设计微流控芯片
  • 批准号:
    DP240102971
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Discovery Projects
Engineered redox polymers for catalytic water purification
用于催化水净化的工程氧化还原聚合物
  • 批准号:
    FT230100526
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    ARC Future Fellowships
CAREER: Mechano-Metabolic Control of Electrical Remodeling of Human Induced Pluripotent Stem Cell Derived Engineered Heart Muscle
职业:人类诱导多能干细胞衍生的工程心肌电重塑的机械代谢控制
  • 批准号:
    2338931
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了