Molecular Mechanisms of Signal Transduction Involving Light, Redox and Transmembrane Complexes
涉及光、氧化还原和跨膜复合物的信号转导的分子机制
基本信息
- 批准号:9276852
- 负责人:
- 金额:$ 44.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AmazeAnimal ModelArchitectureBehaviorBehavioral AssayBiologicalBorreliaCellsChemicalsChemoreceptorsChemotaxisCholeraCircadian RhythmsCommunicationComplexCouplingCryoelectron MicroscopyDefectDevicesDiabetes MellitusDiseaseDrosophila melanogasterElectron Spin Resonance SpectroscopyEnvironmentFeedbackFlagellaFunctional disorderFungal ProteinsGene ExpressionGenerationsGenesGeneticGenetic TranscriptionGoalsHelicobacter pyloriHumanImmune systemInfectionInvadedInvestigationIonsLightLyme DiseaseMacromolecular ComplexesMalignant NeoplasmsManicMemoryMental DepressionMental disordersMetabolicMetabolic DiseasesMetabolismMetalsMolecularMolecular ConformationMotionMotorNatureNeurospora crassaObesityOpticsOrganismOutputOxidation-ReductionPhasePhysiologic pulseProkaryotic CellsProteinsRegulationRepressor ProteinsRoentgen RaysSchizophreniaSensorySignal TransductionSleep DisordersSpectrum AnalysisStructureSwitching ComplexSyphilisSystemTechniquesTissuesTorqueTranscription CoactivatorTreponema pallidumUlcerVibrio choleraeX-Ray Crystallographybasebiophysical analysisbiophysical techniquescell growthcell motilitycircadian pacemakerflavin nucleotideflyinfectious disease treatmentinsightmalignant stomach neoplasmnanomachinepathogenprogramsprotein-histidine kinasereceptorresponsetreatment strategy
项目摘要
The Crane group studies mechanisms of signal transduction with the overall goal of understanding behavior at
the molecular level. This understanding will be achieved by defining the structure and dynamics of key
macromolecular complexes that coordinate gene expression and transmembrane signaling in two systems that
rely on highly cooperative interactions to respond to light, redox and chemical environment. The first, bacterial
chemotaxis, concerns the motion of prokaryotic cells toward external stimulants. Chemotaxis is a paradigm for
understanding transmembrane communication, intracellular information transfer, and motility. Importantly,
many human pathogens that cause diseases such as cholera, gastric cancer and lyme rely on chemotaxis to
establish infection. The sensory apparatus underlying chemotaxis, hereafter called “the chemosome”, displays
amazing sensitivity, dynamic range and a rudimentary molecular memory. In the chemosome, receptors,
histidine kinases (CheA) and coupling proteins assemble into a specific architecture, whose details are just
emerging. This proposal continues efforts to understand chemosome assembly, chemoreceptor conformational
signaling, and ultimately, CheA regulation through restructuring of the receptor arrays. Chemosome output
modulates Nature's consummate nanomachine – the flagella motor. The ultrastructure of the switch complex
within the motor will be defined to understand torque generation, direction switching and response to
chemosome signals. The second system, eukaryotic circadian clocks, comprises cell-autonomous timing
devices that pace metabolism to the diurnal cycle. Clocks are composed of transcriptional-translational
feedback loops (TTFLs) within which repressor proteins inhibit the transcriptional activators of their own genes.
Light entrains the clock phase by stimulating photosensors that impinge directly on the TTFLs. In humans,
aberrant clock function causes mental illness (sleep disorders, depression, mania), cell growth deregulation
(cancer) and metabolic defects (diabetes and obesity). This project proposes structural and mechanistic
investigations of the key repressor and light-setting activities common to clocks in higher organisms.
Biophysical studies will be conducted on the circadian proteins of fungi (Neurospora crassa) and flies
(Drosophila melanogaster). Both model organisms provide genetic systems and behavioral assays to probe
the biological relevance of mechanistic insights. A complimentary set of techniques including X-ray
crystallography, small-angle X-ray scattering, optical spectroscopy, cryo-electron microscopy and pulse-dipolar
ESR spectroscopy (PDS) will be applied to accomplish these goals. For PDS, new strategies for incorporating
spin probes based on nitroxides, flavins, nucleotides, and metal ions will be developed and deployed. Overall,
this program aims to provide a molecular understanding for sensing and response in bacterial chemotaxis and
eukaryotic circadian rhythms through the synergistic application of biophysical methods.
起重机小组研究信号转导机制,其总体目标是了解行为,
分子水平。这种理解将通过定义键的结构和动力学来实现。
在两个系统中协调基因表达和跨膜信号传导的大分子复合物,
依赖于高度合作的相互作用来响应光、氧化还原和化学环境。第一,细菌
趋化性,涉及原核细胞朝向外部刺激物的运动。趋化性是
理解跨膜通讯,细胞内信息传递和运动。重要的是,
许多引起霍乱、胃癌和莱姆病等疾病的人类病原体依赖于趋化性,
建立感染。趋化性背后的感觉器官,以下称为“化学体”,
惊人的灵敏度动态范围和基本的分子记忆在化学体,受体,
组氨酸激酶(CheA)和偶联蛋白组装成一个特定的结构,其细节只是
正在浮现该建议继续努力了解化学体组装,化学感受器构象
信号传导,并最终通过受体阵列的重组来调节CheA。化学体输出
调节着自然界完美的纳米机器--鞭毛马达。开关复合体的超微结构
将被定义为了解转矩产生,方向切换和响应,
化学体信号。第二个系统,真核生物钟,包括细胞自主计时
使新陈代谢与昼夜循环同步的装置。生物钟由转录-翻译
反馈环(TTFL),其中阻遏蛋白抑制其自身基因的转录激活因子。
光通过刺激直接撞击TTFL的光电传感器来夹带时钟相位。在人类中,
生物钟功能异常导致精神疾病(睡眠障碍,抑郁症,躁狂症),细胞生长失调
(癌症)和代谢缺陷(糖尿病和肥胖)。该项目提出了结构和机制
调查的关键阻遏物和光设置活动共同时钟在高等生物体。
将对真菌(粗糙脉孢菌)和苍蝇的昼夜节律蛋白进行生物物理研究
(黑腹果蝇)。这两种模式生物都提供了遗传系统和行为测定来探索
机械论观点的生物学意义。一套免费的技术,包括X射线
晶体学、小角X射线散射、光谱学、低温电子显微镜和脉冲偶极
ESR光谱(PDS)将被应用于实现这些目标。对于PDS,新的战略,
将开发和部署基于氮氧化物、黄素、核苷酸和金属离子的自旋探针。总的来说,
该计划旨在提供对细菌趋化性中的传感和反应的分子理解,
真核生物的昼夜节律通过生物物理方法的协同应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRIAN R CRANE其他文献
BRIAN R CRANE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRIAN R CRANE', 18)}}的其他基金
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
- 批准号:
10797623 - 财政年份:2022
- 资助金额:
$ 44.07万 - 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
- 批准号:
10653773 - 财政年份:2022
- 资助金额:
$ 44.07万 - 项目类别:
2022 Photosensory Receptors and Signal Transduction GRC/GRS
2022 光敏感受器和信号转导GRC/GRS
- 批准号:
10377057 - 财政年份:2022
- 资助金额:
$ 44.07万 - 项目类别:
2022 Photosensory Receptors and Signal Transduction GRC/GRS
2022 光敏感受器和信号转导GRC/GRS
- 批准号:
10545068 - 财政年份:2022
- 资助金额:
$ 44.07万 - 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
- 批准号:
10430665 - 财政年份:2022
- 资助金额:
$ 44.07万 - 项目类别:
Toward novel therapies against Lyme disease through the inhibition of lysinoalaine cross-linking in the bacterial flagella.
通过抑制细菌鞭毛中的赖氨酸丙氨酸交联来开发针对莱姆病的新疗法。
- 批准号:
10470087 - 财政年份:2021
- 资助金额:
$ 44.07万 - 项目类别:
Toward novel therapies against Lyme disease through the inhibition of lysinoalaine cross-linking in the bacterial flagella.
通过抑制细菌鞭毛中的赖氨酸丙氨酸交联来开发针对莱姆病的新疗法。
- 批准号:
10663966 - 财政年份:2021
- 资助金额:
$ 44.07万 - 项目类别:
Molecular mechanisms of signaling systems responsive to light, redox and chemical environment
信号系统响应光、氧化还原和化学环境的分子机制
- 批准号:
10626098 - 财政年份:2017
- 资助金额:
$ 44.07万 - 项目类别:
Molecular mechanisms of signaling systems responsive to light, redox and chemical environment
信号系统响应光、氧化还原和化学环境的分子机制
- 批准号:
10406671 - 财政年份:2017
- 资助金额:
$ 44.07万 - 项目类别:
2014 Sensory Transduction in Microorganisms Gordon Research Conference & Gordon R
2014年微生物感觉传导戈登研究会议
- 批准号:
8651582 - 财政年份:2014
- 资助金额:
$ 44.07万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists