2022 Photosensory Receptors and Signal Transduction GRC/GRS

2022 光敏感受器和信号转导GRC/GRS

基本信息

  • 批准号:
    10545068
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Summary At the 2022 Photosensory Receptors and Signal Transduction (PRST) Gordon Research Conference (GRC) to be held in Ventura CA, scientists from all over the world gather to present and discuss the full palette of photosensory systems that Nature has provided, aiming to understand their mechanisms, signaling pathways and functional effects – from the level of atoms and molecules to that of the physiology of organisms and the ecosystems that they constitute. Photosensory receptors provide unique opportunities to understand the essential principles of signal transduction and protein function because they can be activated by light, rendering them amenable to state-of-the-art physical, chemical and cell-biological approaches. In this way, the central question of how light-induced molecular changes produce large-scale biological signals can be addressed in unprecedented detail. Research of photosensory signaling has enormous practical application. In the case of vertebrate vision, loss of the finely tuned regulation of the phototransduction pathway has been linked to various types of retinal degeneration that cause conditions such as night blindness, tunnel vision, and even the total loss of sight. Studies of phototransduction in the eye also lead to the treatment of retinal diseases, circadian dysfunction and mood disorders. The modular architecture of photosensory systems in combination with their genetic encodability provides the foundation for the field of optogenetics, wherein photoreceptors and their interaction pathways are engineered to noninvasively control cellular processes with light. Research on photosensory receptors is inherently interdisciplinary, requiring basic scientific advances on several fronts. The themes of the GRC and the associated Gordon Research Seminar (GRS) have been chosen to represent the key interdisciplinary problems in the field and to stimulate the exchange of ideas between a diverse group of researchers. Emerging directions such as the impact of new technologies for understanding receptor photophysics and mechanism, the role macromolecular complexes in transducing complex photonic responses, such as those of vertebrate vision, and the engineering of photosensors for optogenetics will be explored in depth. Invited speakers will include both established and early-stage investigators. In addition, poster presenters will compete for short hot-topic talks. The GRS provides a supportive environment for junior scientists to present their work and receive advise by senior mentors. The PRST community has long supported junior scientists, and the GRS will continue to help us nurture the development of early-stage investigators and promote diversity within our community. The field of photosensory transduction has been undergoing a revitalization due to an influx of talented new researchers who apply advanced tools of biophysics, computation, single molecule or cell imaging and high-throughput screening methods to provide answers previously unattainable. The well-integrated PRST GRC/GRS will scientists to the most important questions confronting our field and will encourage postdocs and students to apply their hard-won training to the most exciting new areas of photobiology.
总结 在2022年感光受体和信号转导(PRST)戈登研究会议(GRC)上, 在加利福尼亚州文图拉举行,来自世界各地的科学家聚集在一起,展示和讨论 自然界提供的感光系统,旨在了解它们的机制,信号通路 和功能效应-从原子和分子水平到生物体的生理学水平, 它们所构成的生态系统。感光受体提供了独特的机会,了解 信号转导和蛋白质功能的基本原则,因为它们可以被光激活, 它们可以接受最先进的物理、化学和细胞生物学方法。这样,中央 光诱导的分子变化如何产生大规模生物信号的问题可以在 前所未有的细节。光敏信号的研究具有巨大的实际应用。的情况下 在脊椎动物的视觉中,光转导途径的精细调节的丧失与各种 视网膜变性的类型,导致夜盲症,隧道视力,甚至完全丧失 的视线。对眼睛中的光传导的研究也导致视网膜疾病的治疗,昼夜节律的改变, 功能障碍和情绪障碍。光敏系统的模块化结构与其 遗传可编码性为光遗传学领域提供了基础,其中光感受器和它们的基因编码是光遗传学的基础。 相互作用途径被工程化以利用光非侵入性地控制细胞过程。研究 感光受体本质上是跨学科的,需要在几个方面取得基础科学进展。的 GRC和相关的戈登研究研讨会(GRS)的主题已被选为代表 该领域的关键跨学科问题,并鼓励不同群体之间的思想交流, 研究人员新兴方向,如新技术对了解受体的影响 物理学和机制,大分子复合物在转换复杂光子响应中的作用, 例如脊椎动物的视觉,以及光遗传学的光传感器工程将在 深入受邀发言者将包括已建立的和早期阶段的调查人员。此外,海报制作者 将争夺简短的热门话题。GRS为年轻科学家提供了一个支持性的环境, 他们的工作,并接受高级导师的建议。PRST社区长期以来一直支持初级科学家, 研究所将继续帮助我们培养早期研究人员,促进多样性 在我们的社区。光敏转导领域由于一种新的生物技术而正在经历一场复兴。 大量有才华的新研究人员涌入,他们应用生物物理学、计算、单分子或细胞等先进工具, 成像和高通量筛选方法,以提供以前无法获得的答案。良好的整合 PRST GRC/GRS将科学家对我们领域面临的最重要的问题,并将鼓励博士后 学生们将他们来之不易的训练应用到光生物学最令人兴奋的新领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BRIAN R CRANE其他文献

BRIAN R CRANE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BRIAN R CRANE', 18)}}的其他基金

National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
  • 批准号:
    10797623
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
  • 批准号:
    10653773
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
2022 Photosensory Receptors and Signal Transduction GRC/GRS
2022 光敏感受器和信号转导GRC/GRS
  • 批准号:
    10377057
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
  • 批准号:
    10430665
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Toward novel therapies against Lyme disease through the inhibition of lysinoalaine cross-linking in the bacterial flagella.
通过抑制细菌鞭毛中的赖氨酸丙氨酸交联来开发针对莱姆病的新疗法。
  • 批准号:
    10470087
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Toward novel therapies against Lyme disease through the inhibition of lysinoalaine cross-linking in the bacterial flagella.
通过抑制细菌鞭毛中的赖氨酸丙氨酸交联来开发针对莱姆病的新疗法。
  • 批准号:
    10663966
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Molecular mechanisms of signaling systems responsive to light, redox and chemical environment
信号系统响应光、氧化还原和化学环境的分子机制
  • 批准号:
    10626098
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Molecular Mechanisms of Signal Transduction Involving Light, Redox and Transmembrane Complexes
涉及光、氧化还原和跨膜复合物的信号转导的分子机制
  • 批准号:
    9276852
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Molecular mechanisms of signaling systems responsive to light, redox and chemical environment
信号系统响应光、氧化还原和化学环境的分子机制
  • 批准号:
    10406671
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
2014 Sensory Transduction in Microorganisms Gordon Research Conference & Gordon R
2014年微生物感觉传导戈登研究会议
  • 批准号:
    8651582
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了