Crowdsourcing optimal cancer treatment strategies that maximize efficacy and minimize toxicity
众包最佳癌症治疗策略,最大限度地提高疗效并最大限度地降低毒性
基本信息
- 批准号:9254517
- 负责人:
- 金额:$ 26.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-05 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:Big DataBiologicalBlood flowCellsCombined Modality TherapyCommunitiesCommunity Clinical Oncology ProgramComplexCuesDataDevelopmentDisciplineDiseaseDrug resistanceEcologyEcosystemEnvironmentEvolutionFailureFutureGenotypeGrowth FactorHeart ResearchHeterogeneityHumanHybridsImmuneIndividualIntelligenceKnowledgeLeadMalignant NeoplasmsModelingModernizationMutationNormal CellNutrientOrganPatientsPatternPharmacotherapyPhenotypePlayPopulationProcessRecurrenceRegimenResearchResistanceSiteSolid NeoplasmStromal CellsSurvival RateTestingTherapeuticTimeToxic effectTreatment FailureTreatment ProtocolsTreatment-related toxicityTumor InitiatorsVariantVisualanticancer researchbasecancer cellcancer therapycrowdsourcingeffective therapyfollow-upimprovedin vivoinsightmathematical modelmulti-scale modelingneoplastic cellnovelphase I trialpublic health relevanceresistance mechanismresponsesuccesstherapy resistanttreatment strategytumortumor growthtumor heterogeneitytumor progressionvirtualvisual feedback
项目摘要
DESCRIPTION (provided by applicant): Understanding the complex spatial and temporal process by which tumors initiate, evolve and respond to therapy is a major focus of the oncology community and one that requires the integration of multiple disciplines. A diverse suite of therapies have been developed in the modern era, leading to significantly improved survival rates across many cancers. However, many treatments share a cycle of short-term success followed by recurrence, often of a more aggressive tumor. In the past decade, the cancer research community has begun to acknowledge the importance of heterogeneity across genotypic, phenotypic, and environmental scales as a key driver in drug resistance and treatment failure. The intricate dialogue between tumor cells and environment selects for clones that are best adapted phenotypically to survive, regardless of specific mutations that may facilitate tumor progression. These dynamics, occurring between a heterogeneous tumor and a heterogeneous environment (the cancer ecosystem) are almost impossible to dissect experimentally. Further, adding multiple treatments to the mix often leads to nonlinear and unintuitive dynamics. Therefore, understanding how tumor evolution and ecology changes with treatment is key to controlling the emergence of aggressive and resistant clones following therapy. Our central hypothesis here is that when treating cancer we should exploit heterogeneity, rather than ignore it, by developing crowdsourced sequential and combination therapies that steer tumor evolution and ecology producing more effective, less toxic and longer lasting responses. We plan to test this hypothesis through the development of a research game based on treating a heterogeneous evolving cancer. The core engine of the game will be a calibrated mathematical model of solid tumor growth, tailored to specific organ sites through different associated tumor phenotypes, environment and treatment options. Based on patterns observed while interacting with our research game, successful players will choose the follow-up treatments based on an understanding of the cancer's adaptive response to previous treatments as well as how the cancer is responding to the current therapy in real time. As a result of the power of crowdsourced computation and human intelligence we will derive a suite of optimal treatment strategies across a diverse set of cancer ecosystems.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Robertson Allan Anderson其他文献
Alexander Robertson Allan Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Robertson Allan Anderson', 18)}}的其他基金
Project 1: Delta immune Ecology of NSCLC
项目1:NSCLC的Delta免疫生态学
- 批准号:
10730405 - 财政年份:2023
- 资助金额:
$ 26.89万 - 项目类别:
Crowdsourcing optimal cancer treatment strategies that maximize efficacy and minimize toxicity
众包最佳癌症治疗策略,最大限度地提高疗效并最大限度地降低毒性
- 批准号:
9078857 - 财政年份:2016
- 资助金额:
$ 26.89万 - 项目类别:
Escape from Homeostasis: Integrated Mathmatical and Experimental Investigation
逃离稳态:综合数学和实验研究
- 批准号:
8567244 - 财政年份:2013
- 资助金额:
$ 26.89万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Research Grant