Identifying Novel Molecular Targets for Chronic SCI
确定慢性 SCI 的新分子靶点
基本信息
- 批准号:9231508
- 负责人:
- 金额:$ 33.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-15 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAstrocytesBiochemicalBiological AssayCD36 geneChondroitin Sulfate ProteoglycanChromosome MappingChronicChronic PhaseCicatrixClinicalCoculture TechniquesCommunitiesComplexContusionsDataDiseaseDrosophila sli proteinEnvironmentEphrin-B2FibroblastsFunctional disorderGene ExpressionGenesGlial Fibrillary Acidic ProteinGliosisGoalsInjuryLinkMaintenanceMapsMeningealMethodsModelingMolecularMolecular TargetMusNatural regenerationNeurogliaNeuronsPathologicPathologyPathway AnalysisPathway interactionsPharmacogenomicsPhaseProcessProtein IsoformsQuantitative Reverse Transcriptase PCRRXRReactionReactive InhibitionRegulationResearchResolutionSensitivity and SpecificitySpinal CordSpinal cord injurySpinal cord injury patientsSpliced GenesStretchingSystemSystems BiologyTechnologyTenascinTestingTherapeuticTimeTissue-Specific Gene ExpressionTissuesTranslationsValidationastrogliosisaxon growthaxon regenerationbasedata resourcedifferential expressioneffective therapyexperimental studygain of functiongenome-wide analysisimprovedinnovationinsightinterdisciplinary approachinterestnervous system disorderneuronal growthneuronal guidancenovelprotein expressionpublic health relevanceresponsetherapeutic targettooltranscriptometranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Spinal cord injury (SCI) is a devastating disease without effective treatment. The chronic SCI remains the most difficult to treat. The pathologic hallmarks in chronic SCI include increased astrogliosis and inhibitory molecules that hinder axonal regeneration. However, the understanding of the detailed molecular pathways is still very limited. For example, how inhibitory molecules are regulated and maintained in the chronic phase remains unclear. Current therapeutics for gliosis is not ideal, and new molecular targets are urgently needed. Previous studies have usually focused on a small number of genes and pathways at a time, and thus did not provide a comprehensive view of the complex mechanisms underlying SCI pathophysiology. Although, during the last decade, microarray studies have provided valuable insights into SCI, microarray suffers from limitations in resolution, dynamic range and accuracy. Recent advances in RNA-Sequencing technology make it possible to globally map transcribed regions and quantitatively analyze expression at an unprecedented level of sensitivity and specificity. Based on our preliminary studies of differential expression using RNA-Seq during acute and subacute SCI phases in mouse contusive injury models, we propose to investigate the intricate relationship of genes and pathways in the spinal cord tissue and the predominant component of the glial scar (purified astrocytes) in chronic SCI by using integrated RNA-Seq and network analyses. We hypothesize that novel genes and pathways that regulate or maintain inhibitory molecules in reactive astrocytes (chondroitin sulphate proteoglycans, tenascins, ephrin-B2 and Slit proteins etc.) are critical for the chronic SCI inhibitory environment associated with glial scar. Specifically, we propose to derive a better understanding of the progression of SCI pathophysiology by characterizing gene and splicing isoform changes in SCI subchronic/chronic phases at both temporal and spatial levels. Additionally, we will use an innovative strategy of integrated network analysis to identify novel genes of interest (GOIs) and pathways involved in gliosis as new molecular targets. We will also incorporate pharmacogenomic information into our analyses that will serve as a powerful tool for translation. Finally, we will test GOIs potentially involved in neuron inhibition of reactive astrocytes by loss- and gain-of-function assays in a glia scar model for their functional effects.
Our study is the first to propose that the mechanisms of chronic SCI and gliosis be investigated at the systems level using RNA-Seq, and key genes be identified via innovative pathway and network analyses and be tested by functional assays. The advantage of the genome-wide analysis is that, as a de novo discovery approach, it can identify critical missing links in the disease processes that were not previously appreciated. Importantly, we will generate a comprehensive data resource of SCI gene expression which will be extremely valuable for the research community (jiaqianwulab.org/SCI browser/data). The successful completion of this project will lead to the discovery of novel molecular targets and shift the research and clinical paradigms.
描述(由申请人提供):脊髓损伤(SCI)是一种毁灭性的疾病,没有有效的治疗方法。慢性 SCI 仍然是最难治疗的。慢性 SCI 的病理特征包括星形胶质细胞增多和阻碍轴突再生的抑制分子。然而,对详细分子途径的了解仍然非常有限。例如,在慢性期如何调节和维持抑制分子仍不清楚。目前神经胶质增生的治疗方法并不理想,迫切需要新的分子靶点。以前的研究通常一次集中于少数基因和通路,因此没有提供 SCI 病理生理学背后复杂机制的全面视图。尽管在过去十年中,微阵列研究为 SCI 提供了宝贵的见解,但微阵列在分辨率、动态范围和准确性方面受到限制。 RNA 测序技术的最新进展使得全球转录区域图谱和以前所未有的灵敏度和特异性定量分析表达成为可能。基于我们在小鼠挫伤模型急性和亚急性 SCI 阶段使用 RNA-Seq 进行差异表达的初步研究,我们建议通过使用整合的 RNA-Seq 和网络分析来研究慢性 SCI 中脊髓组织中基因和通路以及慢性 SCI 中神经胶质疤痕(纯化的星形胶质细胞)的主要成分之间的复杂关系。我们假设调节或维持反应性星形胶质细胞中的抑制分子(硫酸软骨素蛋白聚糖、生腱蛋白、肝配蛋白-B2 和 Slit 蛋白等)的新基因和途径对于与神经胶质疤痕相关的慢性 SCI 抑制环境至关重要。具体来说,我们建议通过在时间和空间水平上表征 SCI 亚慢性/慢性阶段的基因和剪接亚型变化,更好地理解 SCI 病理生理学的进展。此外,我们将使用集成网络分析的创新策略来识别新的感兴趣基因(GOIs)和参与神经胶质增生的途径作为新的分子靶标。我们还将把药物基因组学信息纳入我们的分析中,这将成为强大的翻译工具。最后,我们将通过神经胶质疤痕模型中的功能丧失和功能获得测定来测试可能参与反应性星形胶质细胞神经元抑制的 GOI 的功能影响。
我们的研究首次提出使用 RNA-Seq 在系统水平上研究慢性 SCI 和神经胶质增生的机制,并通过创新的通路和网络分析来识别关键基因,并通过功能分析进行测试。全基因组分析的优点在于,作为一种从头发现方法,它可以识别疾病过程中以前未认识到的关键缺失环节。重要的是,我们将生成一个全面的 SCI 基因表达数据资源,这对于研究界来说非常有价值(jiaqianwulab.org/SCI browser/data)。该项目的成功完成将导致新分子靶标的发现并改变研究和临床范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIaqian Wu-Huber其他文献
JIaqian Wu-Huber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JIaqian Wu-Huber', 18)}}的其他基金
Identifying Novel Molecular Targets for Chronic SCI
确定慢性 SCI 的新分子靶点
- 批准号:
10532227 - 财政年份:2015
- 资助金额:
$ 33.69万 - 项目类别:
Identifying Novel Molecular Targets for Chronic SCI
确定慢性 SCI 的新分子靶点
- 批准号:
10374478 - 财政年份:2015
- 资助金额:
$ 33.69万 - 项目类别:
Integrated Analysis of Hematopoietic Precursor Self-renewal and Differentiation
造血前体自我更新与分化的综合分析
- 批准号:
8321470 - 财政年份:2011
- 资助金额:
$ 33.69万 - 项目类别:
Integrated Analysis of Hematopoietic Precursor Self-renewal and Differentiation
造血前体自我更新与分化的综合分析
- 批准号:
8511424 - 财政年份:2011
- 资助金额:
$ 33.69万 - 项目类别:
Integrated Analysis of Hematopoietic Precursor Self-renewal and Differentiation
造血前体自我更新与分化的综合分析
- 批准号:
8307105 - 财政年份:2011
- 资助金额:
$ 33.69万 - 项目类别:
Integrated Analysis of Hematopoietic Precursor Self-renewal and Differentiation
造血前体自我更新与分化的综合分析
- 批准号:
7661972 - 财政年份:2009
- 资助金额:
$ 33.69万 - 项目类别:
Integrated Analysis of Hematopoietic Precursor Self-renewal and Differentiation
造血前体自我更新与分化的综合分析
- 批准号:
8244607 - 财政年份:2009
- 资助金额:
$ 33.69万 - 项目类别:
Identifying the transcription master regulators in yeast
鉴定酵母中的转录主调控因子
- 批准号:
7286725 - 财政年份:2006
- 资助金额:
$ 33.69万 - 项目类别:
Identifying the transcription master regulators in yeast
鉴定酵母中的转录主调控因子
- 批准号:
7157235 - 财政年份:2006
- 资助金额:
$ 33.69万 - 项目类别:
相似国自然基金
Ascl1介导Wnt/beta-catenin通路在TLE海马硬化中反应性Astrocytes异常增生的作用及调控机制
- 批准号:31760279
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of astrocytes in behavioral flexibility
星形胶质细胞对行为灵活性的贡献
- 批准号:
24K18245 - 财政年份:2024
- 资助金额:
$ 33.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Accelerating Functional Maturation of Human iPSC-Derived Astrocytes
加速人 iPSC 衍生的星形胶质细胞的功能成熟
- 批准号:
10699505 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Defining cell type-specific functions for the selective autophagy receptor p62 in neurons and astrocytes
定义神经元和星形胶质细胞中选择性自噬受体 p62 的细胞类型特异性功能
- 批准号:
10676686 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Multispectral Imaging of Neurons and Astrocytes: Revealing Spatiotemporal Organelle Phenotypes in Health and Neurodegeneration
神经元和星形胶质细胞的多光谱成像:揭示健康和神经退行性疾病中的时空细胞器表型
- 批准号:
10674346 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
- 批准号:
10823447 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Investigating the role of diazepam binding inhibitor (DBI) in astrocytes and neural circuit maturation
研究地西泮结合抑制剂 (DBI) 在星形胶质细胞和神经回路成熟中的作用
- 批准号:
10567723 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:














{{item.name}}会员




