Controlling neural circuits with single-cell resolution in behaving animals

以单细胞分辨率控制行为动物的神经回路

基本信息

  • 批准号:
    9275048
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Neural circuits are the fundamental functional units of the nervous system. A basic understanding of circuit function will provide an important basis for understanding how these circuits malfunction in neurological disorders. The study of neural circuits in small and relatively simple model animals such as C. elegans and Drosophila has many advantages, including genetic manipulability and amenability to optical techniques. Circuit analysis in these organisms has been buoyed by the recent development of 'optogenetic' methods for stimulating and inhibiting neural activity using light-sensitive ion channels and pumps [1]. Progress in optogenetics requires not only development and optimization of new opsin molecules but also new strategies and technologies for perturbing specific opsin-expressing neurons. In this project, we will develop optical and genetic methods for manipulating neural circuits with single- neuron resolution in freely moving C. elegans. This project extends previous work by Dr. Fang-Yen, in which machine vision algorithms and lasers patterned by a digital micromirror device (DMD) were used to achieve spatiotemporal control of neural activity in freely behaving worms [2]. This earlier system was limited to a spatial resolution of about 20-30 microns, which is insufficient to selectively illuminate single neurons in the animal's nerve ring (brain). In this project we will develop a next-generation system capable of resolving single neurons and subcellular features. We will approach this goal in three directions. First, we will develop instrumentation and machine vision algorithms to automatically image and track individual neurons and processes using fluorescence imaging. We will use a dual-magnification optical system to simultaneously track behavior of the entire worm and fluorescence in a smaller region. Second, we will design and implement predictive algorithms to illuminate tracked targets with compensation for the latency due to image processing and data transfer. This system will be designed with real-time feedback such that fine-tuning of its parameters can be done in an automated manner. Third, we will use our system, in combination with other methods, to elucidate the mechanisms of modulation of locomotory behaviors by dopaminergic and serotonergic circuits. By enabling, for the first time, the dynamic perturbation of individual or multiple neurons in a behaving animal, the technology we develop will become an important tool for the analysis of neural circuits, with numerous advantages compared with existing methods. In addition to improving our understanding of the circuit basis of behavior, these studies will help provide a circuit-level context for interpreting genetic mutants, for example in C. elegans models of synaptic transmission, neuronal development, and neurodegeneration. While the focus of this project is on C. elegans, we expect that our methods will be readily extensible to other model organisms. This project will be centered in Dr. Fang-Yen's laboratory but will draw on the expertise of several unpaid consultants at the University of Pennsylvania or nearby. These include Dr. David Raizen (Dept. of Neurology), an expert in C. elegans genetics and behavior, Dr. Brian Chow (Dept. of Bioengineering), an expert on optogenetic reagents, and Dr. Niels Ringstad (New York University), an expert in C. elegans genetics and neurotransmitter signaling.
描述(由申请人提供):神经回路是神经系统的基本功能单元。 对电路功能的基本理解将为理解这些电路在神经系统疾病中如何发生故障提供重要基础。 在小型和相对简单的模型动物如C。线虫和果蝇具有许多优点,包括遗传操作性和光学技术的顺从性。 这些生物体中的电路分析受到最近开发的使用光敏离子通道和泵刺激和抑制神经活动的“光遗传学”方法的推动[1]。 光遗传学的进展不仅需要开发和优化新的视蛋白分子,还需要新的策略和技术来干扰特定的视蛋白表达神经元。 在这个计画中,我们将发展光学和遗传学的方法,以在自由移动的C。优美的 该项目扩展了Fang-Yen博士以前的工作,其中使用机器视觉算法和由数字图像处理设备(DMD)图案化的激光来实现对自由行为蠕虫神经活动的时空控制[2]。 这种早期的系统被限制在大约20-30微米的空间分辨率,这不足以选择性地照亮动物神经环(大脑)中的单个神经元。 在这个项目中,我们将开发一个能够解析单个神经元和亚细胞特征的下一代系统。 我们将从三个方向实现这一目标。 首先,我们将开发仪器和机器视觉算法,使用荧光成像自动成像和跟踪单个神经元和过程。 我们将使用双放大光学系统来同时跟踪整个蠕虫的行为和更小区域内的荧光。 其次,我们将设计和实现预测算法,以照亮跟踪目标,补偿由于图像处理和数据传输引起的延迟。 该系统将设计有实时反馈,以便能够以自动方式对其参数进行微调。 第三,我们将使用我们的系统,结合其他方法,阐明多巴胺能和多巴胺能回路对运动行为的调节机制。 通过首次实现行为动物中单个或多个神经元的动态扰动,我们开发的技术将成为分析神经回路的重要工具,与现有方法相比具有许多优势。 除了提高我们对行为回路基础的理解外,这些研究将有助于为口译提供一个回路层面的语境 基因突变体,例如C.突触传递、神经元发育和神经变性的elegans模型。 虽然本项目的重点是C。elegans,我们期望我们的方法将容易地扩展到其他模式生物。 这个计画将以方彦博士的实验室为中心,但也会延揽宾大或附近几位无薪顾问的专业知识。 其中包括大卫Raizen博士(部门。 神经病学),C. elegans genetics and behavior,Dr. Brian Chow(Dept.光遗传学试剂专家尼尔斯·林斯塔德博士(纽约大学)是C. elegans遗传学和神经递质信号传导。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal laser ablation with tunable lesion size reveals multiple origins of seizure-like convulsions in Caenorhabditis elegans.
  • DOI:
    10.1038/s41598-021-84516-y
  • 发表时间:
    2021-03-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Fouad AD;Liu A;Du A;Bhirgoo PD;Fang-Yen C
  • 通讯作者:
    Fang-Yen C
Phase response analyses support a relaxation oscillator model of locomotor rhythm generation in Caenorhabditis elegans.
  • DOI:
    10.7554/elife.69905
  • 发表时间:
    2021-09-27
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Ji H;Fouad AD;Teng S;Liu A;Alvarez-Illera P;Yao B;Li Z;Fang-Yen C
  • 通讯作者:
    Fang-Yen C
Comparing Caenorhabditis elegans gentle and harsh touch response behavior using a multiplexed hydraulic microfluidic device.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Fang-Yen其他文献

Christopher Fang-Yen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Fang-Yen', 18)}}的其他基金

Behavior-based discovery of small-molecule modulators of neurochemical signaling pathways that underlie addiction
基于行为的成瘾神经化学信号通路小分子调节剂的发现
  • 批准号:
    10665084
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Automated platform for high-throughput genetic analyses in C. elegans
用于线虫高通量遗传分析的自动化平台
  • 批准号:
    10382437
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Automated platform for high-throughput genetic analyses in C. elegans
用于线虫高通量遗传分析的自动化平台
  • 批准号:
    10599857
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Automated platform for high-throughput genetic analyses in C. elegans
用于线虫高通量遗传分析的自动化平台
  • 批准号:
    10161875
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Identification neurons controlling sleep/wake in the nematode C. elegans
识别控制线虫睡眠/觉醒的神经元 秀丽隐杆线虫
  • 批准号:
    8868312
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
Controlling neural circuits with single-cell resolution in behaving animals
以单细胞分辨率控制行为动物的神经回路
  • 批准号:
    8559985
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:

相似海外基金

The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
  • 批准号:
    10678248
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
  • 批准号:
    10681939
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10427574
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
  • 批准号:
    10609909
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
  • 批准号:
    10607392
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10675646
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
  • 批准号:
    457552
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
  • 批准号:
    10331361
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10623306
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
  • 批准号:
    10376866
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了