Biomedical Computing and Informatics Strategies for Precision Medicine
精准医学的生物医学计算和信息学策略
基本信息
- 批准号:9366045
- 负责人:
- 金额:$ 35.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBiomedical ComputingBreast Cancer TreatmentClinicalCluster AnalysisComplexComputer AnalysisComputer SimulationComputing MethodologiesDataData SetDiagnosisDiagnostic testsDiseaseEnsureFeedbackGene ClusterGene ExpressionGenesGenomicsGoalsInformation DisseminationMalignant NeoplasmsMeasuresMethodsModelingNon-Small-Cell Lung CarcinomaOutcomePathway interactionsPhysiciansReproducibilityResearch PersonnelSensitivity and SpecificitySeveritiesStatistical ComputingStatistical MethodsTestingTissuesbiomedical informaticsclinically relevantcohesionexperiencegenomic dataimprovedindexinginnovationknowledge basemalignant breast neoplasmnew therapeutic targetnovelopen sourceprecision medicinetumorweb page
项目摘要
The use of genomic measures for precision medicine will depend critically on our ability to identify genes
whose expression impacts the initiation, progression, and severity of common diseases such as sporadic
cancer. A multitude of powerful computational and statistical methods have been developed over the last 20
years to assist with this endeavor. However, the vast majority of these approaches focus on error or related
measures such as sensitivity and specificity as a measure of model quality. These measures are important but
do not capture other measures of model quality that may be meaningful to biomedical researchers and
physicians. We propose here to develop a comprehensive approach to modeling genomics data that takes into
consideration multiple objective and subjective measures of model quality simultaneously. It is our working
hypothesis that multiobjective methods will yield results that are more consistent, more reproducible, and with
greater clinical impact. Specifically, we will develop a novel Hierarchical Pareto Optimization (HiParOp)
algorithm that is capable of integrating multiple criteria for a given computational model of gene expression and
clinical outcomes (AIM 1). This approach will first be validated with simulated gene expression data that reflect
the hierarchical complexity of cancer. We will then evaluate the HiParOp algorithm by applying it to several
well-studied and well-characterized breast cancer data sets that have led to diagnostic tests and new drug
targets (AIM 2). Here, we will include a long list of measures of model quality that include traditional objective
measures such as the cohesiveness or distinctiveness of tumor clusters as well as subjective measures such
as clinical relevance and druggability. Experience applying HiParOp to a well-studied cancer where significant
progress has been made will be used to make further refinements to the algorithm. We will then apply the
HiParOp approach to the genomic analysis of non-small cell lung cancer (NSCLC) where there is substantial
opportunity for improved diagnosis and treatment. We will analyze several carefully conducted gene
expression studies in NSCLC cancer tissue (AIM 3). Finally, we will develop and release an R package that will
allow others to easily implement the HiParOp method (AIM 4).
在精准医疗中使用基因组测量将严重依赖于我们识别基因的能力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID George BEER其他文献
DAVID George BEER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID George BEER', 18)}}的其他基金
RNF128 Regulation of TP53 in Barrett's Progression
RNF128 对 Barrett 进展中 TP53 的调节
- 批准号:
10219176 - 财政年份:2017
- 资助金额:
$ 35.92万 - 项目类别:
RNF128 Regulation of TP53 in Barrett's Progression
RNF128 对 Barrett 进展中 TP53 的调节
- 批准号:
9976469 - 财政年份:2017
- 资助金额:
$ 35.92万 - 项目类别:
Multi-Spectral Targeted Imaging for Early Detection of Cancer in Barrett's Esopha
多光谱靶向成像用于巴雷特食管癌症的早期检测
- 批准号:
8724430 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
Early Targets in Progression of Barrett's Esophagus to Esophageal Adenocarcinoma
巴雷特食管进展为食管腺癌的早期目标
- 批准号:
9277831 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
Identification and Characterization of Gene Fusions in Lung Adenocarcinoma
肺腺癌基因融合的鉴定和表征
- 批准号:
8018735 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
Identification and Characterization of Gene Fusions in Lung Adenocarcinoma
肺腺癌基因融合的鉴定和表征
- 批准号:
8249361 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
Multi-Spectral Targeted Imaging for Early Detection of Cancer in Barrett's Esopha
多光谱靶向成像用于巴雷特食管癌症的早期检测
- 批准号:
8919278 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
Project 1: Identification and Validation of Panel of Early Cell Surface Gene Targets
项目 1:早期细胞表面基因靶标组的鉴定和验证
- 批准号:
10155438 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
Multi-Spectral Targeted Imaging for Early Detection of Cancer in Barrett's Esopha
多光谱靶向成像用于巴雷特食管癌症的早期检测
- 批准号:
8209767 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
Identification of Cell Surface Targets Based on Gene Amplification/Overexpression
基于基因扩增/过表达的细胞表面靶点鉴定
- 批准号:
8244086 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
相似海外基金
DIVISION OF CANCER CONTROL AND POPULATION SCIENCES (DCCPS) BIOMEDICAL COMPUTING SUPPORT SERVICES_ Moonshot Support
癌症控制和人口科学部 (DCCPS) 生物医学计算支持服务_ Moonshot 支持
- 批准号:
10975530 - 财政年份:2023
- 资助金额:
$ 35.92万 - 项目类别:
DIVISION OF CANCER CONTROL AND POPULATION SCIENCES (DCCPS) BIOMEDICAL COMPUTING SUPPORT SERVICES
癌症控制和人口科学部 (DCCPS) 生物医学计算支持服务
- 批准号:
10929019 - 财政年份:2023
- 资助金额:
$ 35.92万 - 项目类别:
BIOMEDICAL COMPUTING, ANALYTIC, AND DATA MANAGEMENT SERVICESTASK ORDER TITLE: NCCIH INTEGRATED INFORMATION SERVICES PROGRAM
生物医学计算、分析和数据管理服务任务订单名称:NCCIH 综合信息服务计划
- 批准号:
10709355 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Discovery Grants Program - Individual
BIOMEDICAL COMPUTING, ANALYTIC, AND DATA MANAGEMENT SERVICESTASK ORDER TITLE: NCCIH INTEGRATED INFORMATION SERVICES PROGRAM
生物医学计算、分析和数据管理服务任务订单名称:NCCIH 综合信息服务计划
- 批准号:
10894363 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2021
- 资助金额:
$ 35.92万 - 项目类别:
Discovery Grants Program - Individual
BIOMEDICAL COMPUTING SERVICES FOR NCI DCCPS
NCI DCCPS 的生物医学计算服务
- 批准号:
10658959 - 财政年份:2020
- 资助金额:
$ 35.92万 - 项目类别:
BIOMEDICAL COMPUTING SERVICES FOR NCI DCCPS
NCI DCCPS 的生物医学计算服务
- 批准号:
10444966 - 财政年份:2020
- 资助金额:
$ 35.92万 - 项目类别:
BIOMEDICAL COMPUTING SERVICES FOR NCI DCCPS
NCI DCCPS 的生物医学计算服务
- 批准号:
10282865 - 财政年份:2020
- 资助金额:
$ 35.92万 - 项目类别:
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2020
- 资助金额:
$ 35.92万 - 项目类别:
Discovery Grants Program - Individual