Assessing deformable image registration in the lung using hyperpolarized-gas MRI
使用超极化气体 MRI 评估肺部可变形图像配准
基本信息
- 批准号:9380237
- 负责人:
- 金额:$ 6.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-07 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmericanAnatomyAssessment toolBiomechanicsBreathingCell NucleusChestClinicClinicalCommunitiesContrast MediaDataData SetDevelopmentEmerging TechnologiesEvaluationExhalationFour-dimensionalGasesGoalsGoldHybridsImageImaging TechniquesLeadLungLung NeoplasmsMagnetic Resonance ImagingMalignant neoplasm of lungMeasuresMedicineMethodologyMethodsModelingModernizationMorphologyMotionNormal tissue morphologyPatientsPhasePhysiologic pulsePhysiologicalPilot ProjectsPositioning AttributeProceduresRadiation therapyResearchResolutionScanningSeriesSiteStructureTechniquesTechnologyThree-Dimensional ImagingTissuesValidationVariantVertebral columnVisualbaseclinical applicationclinical decision-makingdigitalimage registrationimprovedin vivoinsightnovelpublic health relevanceradiation-induced injuryrespiratorysoundsuccesstooltreatment planning
项目摘要
ABSTRACT
Changes in the position and orientation of a patient’s anatomical features during radiotherapy, if not properly
managed, can lead to underdosage of the target and/or overdosage of neighboring healthy tissues.
Deformable image registration (DIR), owing to its ability to geometrically align two images, is becoming
increasingly important in radiotherapy for managing these anatomy variations. The accuracy of the DIR directly
impacts the success of its clinical applications. Careful assessment of DIR algorithms is therefore a critical
necessity before they may be used to inform clinical decision making. Current methods of DIR assessment
focus on morphological structures but not on the physiological validity of the entire deformation. Recently, we
have demonstrated a novel hyperpolarized 3He tagging MRI technique that is capable of directly, in vivo, and
non-invasively measuring physiological lung deformation on a regional basis. This unique imaging technique
holds great promise for assessing, validating, and improving the use of DIR algorithms in the lung. Our long
term goal is to apply hyperpolarized gas tagging MRI to study lung biomechanics, develop more physiologically
sound DIR algorithms for the lungs, and eventually improve radiotherapy of lung cancer. The overall objective
of this application is to optimize the hyperpolarized 3He tagging MRI technology and establish its usefulness for
DIR assessment. Aim 1 is to develop and optimize a methodology based on 3D hyperpolarized 3He tagging
MRI for directly measuring lung deformation. Aim 2 is to develop physiologically sound digital thorax phantoms
based on HP 3He tagging MRI and demonstrate their use for DIR assessment in the lung. Successful
completion of these aims will yield a novel methodology based on hyperpolarized 3He tagging MRI for DIR
assessment in the lung for radiotherapy. It will also yield a number of novel MR imaging techniques and a new
series of digital thorax phantoms. The ability to measure true physiological lung deformation makes our
technique a promising tool for the assessment, validation, and improvement of lung DIR algorithms. This study
will bring important changes to research and the clinic. In the short term, it may lend new insights into the
complexities of pulmonary biomechanics, enrich our understanding of DIR, generate gold-standard datasets of
lung deformation that may benefit the research community, and provide guidance for clinical implementation of
DIR. In the long term, it may lead to development of more sophisticated DIR tools for improving radiotherapy of
lung cancer, resulting in more precisely delivered radiation treatment to lung tumors and mitigating radiation-
induced injury to surrounding normal tissues.
摘要
放射治疗期间患者解剖特征的位置和方向发生变化,如果不正确
管理,可能导致目标的剂量不足和/或邻近健康组织的剂量过量。
可变形图像配准(Deformable Image Registration,简称形变配准)由于其能够在几何上对齐两幅图像,
在放射治疗中越来越重要,用于管理这些解剖结构变化。测量的准确性直接
影响其临床应用的成功。因此,仔细评估并行计算算法至关重要。
在它们可以被用于告知临床决策之前,它们是必要的。目前的风险评估方法
专注于形态结构,而不是整个变形的生理有效性。最近我们
已经证明了一种新的超极化3 He标记MRI技术,能够直接,在体内,
在区域基础上非侵入性地测量生理肺变形。这种独特的成像技术
对于评估、验证和改进肺部中的呼吸机算法的使用具有很大的希望。我们漫长
长期目标是应用超极化气体标记MRI研究肺生物力学,
完善肺部的放射治疗算法,最终提高肺癌的放射治疗效果。总体目标
本申请的目的是优化超极化3 He标记MRI技术,并确定其用于
评估。目的1是开发和优化基于3D超极化3 He标记的方法学
MRI用于直接测量肺变形。目的二是研制符合生理学要求的数字胸腔模型
基于HP 3 He标记MRI,并证明其用于肺中的放射性评估。成功
这些目标的完成将产生一种基于超极化3 He标记MRI的新方法,
在肺部进行放射治疗评估。它还将产生一些新的磁共振成像技术和一个新的
数字胸部模型系列。测量真实生理肺变形的能力使我们
该技术是一种有前途的工具,用于评估,验证和改进肺部造影算法。本研究
将给研究和临床带来重大变化。在短期内,它可能会给人们带来新的见解,
肺生物力学的复杂性,丰富了我们对肺功能的理解,生成了肺功能的黄金标准数据集,
肺变形,可能有利于研究界,并为临床实施提供指导,
DIR.从长远来看,它可能会导致更复杂的放射治疗工具的发展,以改善放射治疗,
肺癌,导致更精确地对肺肿瘤进行放射治疗并减轻辐射-
对周围正常组织造成损伤。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A hybrid proton and hyperpolarized gas tagging MRI technique for lung respiratory motion imaging: a feasibility study.
用于肺呼吸运动成像的混合质子和超极化气体标记 MRI 技术:可行性研究。
- DOI:10.1088/1361-6560/ab160c
- 发表时间:2019
- 期刊:
- 影响因子:3.5
- 作者:Hu,Lei;Huang,Qijie;Cui,Taoran;Duarte,Isabella;Miller,GWilson;Mugler,JohnP;Cates,GordonD;Mata,JaimeF;deLange,EduardE;Altes,TalissaA;Yin,Fang-Fang;Cai,Jing
- 通讯作者:Cai,Jing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Cai其他文献
Jing Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Cai', 18)}}的其他基金
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
9980333 - 财政年份:2019
- 资助金额:
$ 6.65万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10204956 - 财政年份:2019
- 资助金额:
$ 6.65万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10653082 - 财政年份:2019
- 资助金额:
$ 6.65万 - 项目类别:
Toward precision radiotherapy: Physiological modeling of respiratory motion based on ultra-quality 4D-MRI
迈向精准放疗:基于超高质量 4D-MRI 的呼吸运动生理模型
- 批准号:
10413106 - 财政年份:2019
- 资助金额:
$ 6.65万 - 项目类别:
Image-guided Dosimetry for Injectable Brachytherapy based on Elastin-like Polypeptide Nanoparticles
基于类弹性蛋白多肽纳米颗粒的注射近距离放射治疗的图像引导剂量测定
- 批准号:
9530607 - 财政年份:2017
- 资助金额:
$ 6.65万 - 项目类别:
Assessing deformable image registration in the lung using hyperpolarized-gas MRI
使用超极化气体 MRI 评估肺部可变形图像配准
- 批准号:
9179479 - 财政年份:2016
- 资助金额:
$ 6.65万 - 项目类别:
Assessing deformable image registration in the lung using hyperpolarized-gas MRI
使用超极化气体 MRI 评估肺部可变形图像配准
- 批准号:
9312777 - 财政年份:2016
- 资助金额:
$ 6.65万 - 项目类别:
Motion Management Using 4D-MRI for Liver Cancer in Radiation Therapy
在肝癌放射治疗中使用 4D-MRI 进行运动管理
- 批准号:
8824888 - 财政年份:2013
- 资助金额:
$ 6.65万 - 项目类别:
Motion Management Using 4D-MRI for Liver Cancer in Radiation Therapy
在肝癌放射治疗中使用 4D-MRI 进行运动管理
- 批准号:
8443466 - 财政年份:2013
- 资助金额:
$ 6.65万 - 项目类别:
Motion Management Using 4D-MRI for Liver Cancer in Radiation Therapy
在肝癌放射治疗中使用 4D-MRI 进行运动管理
- 批准号:
8604696 - 财政年份:2013
- 资助金额:
$ 6.65万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Continuing Grant