Multiscale Modeling of Sickle Cell Anemia: Methods and Validation

镰状细胞性贫血的多尺度建模:方法和验证

基本信息

  • 批准号:
    9315872
  • 负责人:
  • 金额:
    $ 77.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective of this project is to develop a validated multiscale modeling methodology for quantifying the biophysical characteristics of sickle cell disease (SCD) -- a hematological disorder that affects tens of thousands of people in US with one in every 500 African-American births resulting in a child with SCD. The pathogenesis of SCD results from (1) irregular red blood cell (RBC) shapes due to hemoglobin polymerization inside the RBCs; (2) stiffening of the RBC membrane; and (3) adhesion of sickle RBCs to the endothelium and the other blood cells. The combination of these phenomena results in vaso-occlusive events or "crises" responsible for the majority of morbidity and mortality associated with SCD but little is certain about the proximal causes or the circumstances in which they occur. The spatio-temporal scales involved in accurately modeling SCD blood flow and vaso-occlusion span at least four orders of magnitude, hence new numerical methods are needed to simulate such multiscale phenomena. We present a general methodology based on 3D dissipative particle dynamics (DPD) to model flow and soft matter seamlessly, i.e., RBCs and other blood cells, blood plasma, cytosol, hemoglobin polymerization, and adhesive dynamics. DPD can be interfaced with molecular dynamics (MD) and with continuum-based description (e.g. Navier-Stokes) based on the triple-decker algorithm we have developed in order to capture molecular details or for computational efficiency in simulating large arteries or networks, respectively. We adopt the same approach here that has proven very effective in our previous work on malaria, namely that models for single RBCs (healthy or sickled), informed and validated from comprehensive single-cell measurements, will be used to predict the collective dynamics and rheology of SCD blood flow. We also present a systematic experimental plan, using microfluidics, nanomechanics and advanced optical techniques, to validate the various stages of the development of our models by targeting individual scales as well as interactions between scales. We will extend the first generation of models to study different modalities of existing and experimental therapeutic interventions for SCD, including simple transfusion, fetal hemoglobin (HbF) induction by hydroxyurea, and RBC hydration. Predictability of multiscale models requires quantifying uncertainty, and, to this end, we will incorporate polynomial chaos methods to model and propagate parametric uncertainties through the multiscale system. We plan to disseminate our models, software tools, and experimental data including the general-purpose triple-decker algorithm, via web-based repositories, existing public open-ware sites, tutorials and through the MSM consortium.
描述(由申请人提供):本项目的目的是开发一种有效的多尺度建模方法,用于量化镰状细胞病(SCD)的生物物理特征-一种血液学疾病,影响美国数万人,每500名非洲裔美国人中就有一名出生时患有SCD的儿童。SCD的发病机制由以下原因引起:(1)由于红细胞(RBC)内的血红蛋白聚合而导致的不规则红细胞(RBC)形状;(2)RBC膜的硬化;以及(3)镰状RBC粘附到内皮和其他血细胞。这些现象的组合导致血管闭塞事件或“危象”,导致与SCD相关的大多数发病率和死亡率,但几乎不确定近端原因或其发生的环境。SCD血流和血管阻塞的精确建模所涉及的时空尺度跨越至少四个数量级,因此需要新的数值方法来模拟这种多尺度现象。我们提出了一种基于3D耗散粒子动力学(DPD)的通用方法来无缝地模拟流动和软物质,即,红细胞和其他血细胞,血浆,胞质溶胶,血红蛋白聚合和粘附动力学。DPD可以与分子动力学(MD)和基于三层算法的连续描述(例如Navier-Stokes)接口,我们已经开发了三层算法,以捕获分子细节或模拟大动脉或网络的计算效率。我们在这里采用了在我们以前的疟疾工作中证明非常有效的相同方法,即从全面的单细胞测量中获得信息和验证的单个RBC(健康或镰状)模型将用于预测SCD血流的集体动力学和流变学。我们还提出了一个系统的实验计划,使用微流体,纳米力学和先进的光学技术,通过针对单个尺度以及尺度之间的相互作用来验证我们模型发展的各个阶段。我们将扩展第一代模型,以研究SCD的现有和实验性治疗干预的不同模式,包括简单输血、通过羟基脲诱导胎儿血红蛋白(HbF)和RBC水合。多尺度模型的可预测性需要量化的不确定性,为此,我们将采用多项式混沌方法来建模和传播参数的不确定性通过多尺度系统。我们计划传播我们的模型,软件工具和实验数据,包括通用的三层算法,通过基于Web的存储库,现有的公共开放式网站,教程和通过MSM联盟。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational biorheology of human blood flow in health and disease.
  • DOI:
    10.1007/s10439-013-0922-3
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Fedosov, Dmitry A.;Dao, Ming;Karniadakis, George Em;Suresh, Subra
  • 通讯作者:
    Suresh, Subra
Patient-specific modeling of individual sickle cell behavior under transient hypoxia.
  • DOI:
    10.1371/journal.pcbi.1005426
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Li X;Du E;Dao M;Suresh S;Karniadakis GE
  • 通讯作者:
    Karniadakis GE
Electrostatic correlations near charged planar surfaces.
带电平面附近的静电相关性。
  • DOI:
    10.1063/1.4894053
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deng,Mingge;Karniadakis,GeorgeEm
  • 通讯作者:
    Karniadakis,GeorgeEm
Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers.
用于理解镰状细胞纤维之间相互作用的介观自适应分辨率方案。
  • DOI:
    10.1016/j.bpj.2017.05.050
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Lu,Lu;Li,He;Bian,Xin;Li,Xuejin;Karniadakis,GeorgeEm
  • 通讯作者:
    Karniadakis,GeorgeEm
Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies
  • DOI:
    10.1126/sciadv.aax3905
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Lu, Lu;Li, Zhen;Karniadakis, George Em
  • 通讯作者:
    Karniadakis, George Em
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Dao其他文献

Ming Dao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Dao', 18)}}的其他基金

Single-cell measurement of cyclic stress on sickle blood cells by imaging-microfluidics
通过成像微流控单细胞测量镰状血细胞的循环应激
  • 批准号:
    10605208
  • 财政年份:
    2021
  • 资助金额:
    $ 77.81万
  • 项目类别:
Single-cell measurement of cyclic stress on sickle blood cells by imaging-microfluidics
通过成像微流体单细胞测量镰状血细胞的循环应激
  • 批准号:
    10398251
  • 财政年份:
    2021
  • 资助金额:
    $ 77.81万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
  • 批准号:
    2409620
  • 财政年份:
    2024
  • 资助金额:
    $ 77.81万
  • 项目类别:
    Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
  • 批准号:
    2403716
  • 财政年份:
    2024
  • 资助金额:
    $ 77.81万
  • 项目类别:
    Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
  • 批准号:
    23H01718
  • 财政年份:
    2023
  • 资助金额:
    $ 77.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
  • 批准号:
    EP/W019450/1
  • 财政年份:
    2023
  • 资助金额:
    $ 77.81万
  • 项目类别:
    Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 77.81万
  • 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 77.81万
  • 项目类别:
    Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
  • 批准号:
    10062336
  • 财政年份:
    2023
  • 资助金额:
    $ 77.81万
  • 项目类别:
    Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
  • 批准号:
    10677869
  • 财政年份:
    2022
  • 资助金额:
    $ 77.81万
  • 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
  • 批准号:
    10746743
  • 财政年份:
    2022
  • 资助金额:
    $ 77.81万
  • 项目类别:
Mechanisms of Blood Clot Adhesion and the Design of New Wet Adhesives
血凝块粘附机制及新型湿粘合剂的设计
  • 批准号:
    RGPIN-2018-04918
  • 财政年份:
    2022
  • 资助金额:
    $ 77.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了