Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
基本信息
- 批准号:9316689
- 负责人:
- 金额:$ 14.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-10-31
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAnimalsApoptosisAtlasesBehaviorBiological ModelsBiologyCell CycleCellsCollecting TubeComplexCongenital AbnormalityCytoskeletonDataDevelopmentDevelopmental BiologyDorsalDrosophila genusEmbryoEnsureFoundationsGene ExpressionGene Expression ProfileGeneticGrowthHumanImageIndividualLateralLengthLightLinkMeasuresMechanical StressMechanicsMediatingMethodsMicroscopeMidgutMidgut LoopModelingMorphogenesisMotorMovementMyosin ATPaseNF-kappa BNew TerritoriesOrganPatternPhasePhysicsPositioning AttributePostdoctoral FellowResearchResolutionRestRoleScientific InquiryShapesSideSignal TransductionStressStretchingStructureSystemTestingTimeTissue EngineeringTissuesTranscriptional RegulationTubecardiogenesiscell behaviorcell motilitycell typecongenital heart disorderdesigndriving forceexperimental studyimprintinsightintercalationmembermorphogensmutantnovelprogramstheoriestooltranscription factor
项目摘要
ABSTRACT
The form that organs acquire during development is critical for their functionality. For example, failed tissue
looping during heart development results in congenital heart disease - the most common birth defect observed
in humans. While many studies have identified how cells are fated to perform their tasks, we know little about
the forces that shape tissues. Transcription factors (TFs) spanning multiple length scales - ranging from a few
to hundreds of cells - precisely regulate gene expression programs. These programs generate the physical
stresses that give rise to cell behavior. To ensure that organs take on their proper shape vital for their function,
physical stresses must be coordinated across tissues spanning multiple length scales. We are beginning to
understand how short-ranged TFs control physical stresses at the level of individual cells. This proposal seeks
to uncover how tissues are shaped by physical stresses, controlled at the organ scale, using D. melanogaster
as a model system.
Novel methods for in toto live imaging and tissue cartography have revealed: cell behavior is modulated along
the dorsoventral (DV) axis during germband extension. DV behavior modulation is lost in dorsalizing mutants.
These findings challenge the assumption, that long-range TFs, such as Dorsal, act only indirectly by setting up
short-range patterns to control stress. To test the hypothesis that long-range TFs modulate physical stresses
responsible for organ shape, we propose: Aim 1 to measure physical stress at the organ scale, and by
systematic comparison to known TF expression patterns, identify the role of Dorsal in organ scale stress
coordination. In aim 2 we will extend our observations to investigate coordination of cell behavior across
heterologous tissue layers during midgut looping.
The proposed research combines quantitative experiments with theory, to provide the first strategy for
measuring TF mediated global stress coordination that shapes organs. State of the art microscopes and tools
designed for analyzing cell behaviors that produce complex shapes will open new opportunities for
understanding how intricate organs form, including loops.
摘要
器官在发育过程中获得的形态对其功能至关重要。例如,
心脏发育过程中的循环导致先天性心脏病--这是观察到的最常见的出生缺陷
虽然许多研究已经确定了细胞是如何注定要执行它们的任务的,但我们对细胞的功能知之甚少。
塑造组织的力量转录因子(TF)跨越多个长度尺度-从几个
到数百个细胞-精确地调节基因表达程序。这些程序产生了
引起细胞行为的压力。为了确保器官具有对其功能至关重要的正确形状,
物理应力必须在跨越多个长度尺度的组织上协调。我们开始
了解短程TF如何在单个细胞水平上控制物理应力。该提案寻求
为了揭示组织是如何被物理应力塑造的,在器官尺度上控制,使用D。melanogaster
作为一个模型系统。
用于全活成像和组织制图的新方法已经揭示:细胞行为沿着
背腹(DV)轴在生殖带延伸。DV行为调节在背化突变体中丢失。
这些发现挑战了这样的假设,即长距离TF,如Dorsal,仅通过建立间接作用。
短距离模式来控制压力为了验证长距离TF调节物理应力的假设,
负责器官的形状,我们提出:目的1,测量物理应力在器官的规模,并通过
与已知TF表达模式进行系统比较,确定Dorsal在器官规模应激中的作用
协同在aim 2中,我们将扩展我们的观察,以研究细胞行为的协调,
异源组织层在中肠循环。
该研究将定量实验与理论相结合,为
测量TF介导的塑造器官的整体应力协调。最先进的显微镜和工具
用于分析产生复杂形状的细胞行为的设计将为
了解复杂的器官是如何形成的,包括循环
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian J Streichan其他文献
Sebastian J Streichan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian J Streichan', 18)}}的其他基金
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10439851 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10029359 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10676186 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10250508 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo.
生命物质物理学:从分子到胚胎。
- 批准号:
10582455 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Developing organoid model to study active folding in a human genetic context
开发类器官模型来研究人类遗传背景下的主动折叠
- 批准号:
9810045 - 财政年份:2019
- 资助金额:
$ 14.34万 - 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
- 批准号:
9164331 - 财政年份:2016
- 资助金额:
$ 14.34万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 14.34万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




