Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
基本信息
- 批准号:9316689
- 负责人:
- 金额:$ 14.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-10-31
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAnimalsApoptosisAtlasesBehaviorBiological ModelsBiologyCell CycleCellsCollecting TubeComplexCongenital AbnormalityCytoskeletonDataDevelopmentDevelopmental BiologyDorsalDrosophila genusEmbryoEnsureFoundationsGene ExpressionGene Expression ProfileGeneticGrowthHumanImageIndividualLateralLengthLightLinkMeasuresMechanical StressMechanicsMediatingMethodsMicroscopeMidgutMidgut LoopModelingMorphogenesisMotorMovementMyosin ATPaseNF-kappa BNew TerritoriesOrganPatternPhasePhysicsPositioning AttributePostdoctoral FellowResearchResolutionRestRoleScientific InquiryShapesSideSignal TransductionStressStretchingStructureSystemTestingTimeTissue EngineeringTissuesTranscriptional RegulationTubecardiogenesiscell behaviorcell motilitycell typecongenital heart disorderdesigndriving forceexperimental studyimprintinsightintercalationmembermorphogensmutantnovelprogramstheoriestooltranscription factor
项目摘要
ABSTRACT
The form that organs acquire during development is critical for their functionality. For example, failed tissue
looping during heart development results in congenital heart disease - the most common birth defect observed
in humans. While many studies have identified how cells are fated to perform their tasks, we know little about
the forces that shape tissues. Transcription factors (TFs) spanning multiple length scales - ranging from a few
to hundreds of cells - precisely regulate gene expression programs. These programs generate the physical
stresses that give rise to cell behavior. To ensure that organs take on their proper shape vital for their function,
physical stresses must be coordinated across tissues spanning multiple length scales. We are beginning to
understand how short-ranged TFs control physical stresses at the level of individual cells. This proposal seeks
to uncover how tissues are shaped by physical stresses, controlled at the organ scale, using D. melanogaster
as a model system.
Novel methods for in toto live imaging and tissue cartography have revealed: cell behavior is modulated along
the dorsoventral (DV) axis during germband extension. DV behavior modulation is lost in dorsalizing mutants.
These findings challenge the assumption, that long-range TFs, such as Dorsal, act only indirectly by setting up
short-range patterns to control stress. To test the hypothesis that long-range TFs modulate physical stresses
responsible for organ shape, we propose: Aim 1 to measure physical stress at the organ scale, and by
systematic comparison to known TF expression patterns, identify the role of Dorsal in organ scale stress
coordination. In aim 2 we will extend our observations to investigate coordination of cell behavior across
heterologous tissue layers during midgut looping.
The proposed research combines quantitative experiments with theory, to provide the first strategy for
measuring TF mediated global stress coordination that shapes organs. State of the art microscopes and tools
designed for analyzing cell behaviors that produce complex shapes will open new opportunities for
understanding how intricate organs form, including loops.
抽象的
器官在开发过程中获得的形式对于它们的功能至关重要。例如,组织失败
心脏发育期间循环导致先天性心脏病 - 最常见的生日缺陷
在人类中。尽管许多研究已经确定了细胞如何执行其任务,但我们对
塑造组织的力。跨越多个长度尺度的转录因子(TF) - 从几个
到数百个细胞 - 精确调节基因表达程序。这些程序生成物理
引起细胞行为的压力。为了确保器官对其功能至关重要的适当形状,
身体应力必须在跨越多个长度尺度的组织中协调。我们开始
了解短距离TFS如何控制单个细胞水平的身体应力。该建议寻求
使用D. melanogaster揭示如何通过身体应力来控制组织的形状,并在器官尺度上控制
作为模型系统。
Toto实时成像和组织制图中的新方法已经揭示了:细胞行为沿
胚芽延伸过程中的背腹轴(DV)轴。 DV行为调制在背层突变体中丢失。
这些发现挑战了以下假设,即远程TF(例如背侧)仅通过设置而间接起作用
短距离模式以控制应力。测试远距离TFS调节物理应力的假设
负责器官形状,我们建议:目标1在器官尺度上测量身体压力,并通过
与已知TF表达模式的系统比较,确定背侧在器官尺度应力中的作用
协调。在AIM 2中,我们将扩展观察结果,以调查整个细胞行为的协调
中肠循环期间异源组织层。
拟议的研究将定量实验与理论相结合,以提供第一个策略
测量塑造器官的TF介导的全球应力协调。最先进的显微镜和工具
专为分析产生复杂形状的细胞行为而设计的将为新的机会开放
了解包括循环在内的复杂器官的形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian J Streichan其他文献
Sebastian J Streichan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian J Streichan', 18)}}的其他基金
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10439851 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10029359 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10676186 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10250508 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo.
生命物质物理学:从分子到胚胎。
- 批准号:
10582455 - 财政年份:2020
- 资助金额:
$ 14.34万 - 项目类别:
Developing organoid model to study active folding in a human genetic context
开发类器官模型来研究人类遗传背景下的主动折叠
- 批准号:
9810045 - 财政年份:2019
- 资助金额:
$ 14.34万 - 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
- 批准号:
9164331 - 财政年份:2016
- 资助金额:
$ 14.34万 - 项目类别:
相似国自然基金
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
利用可视可控hypocretin神经元凋亡的疾病模型进行发作性睡病发病机制研究
- 批准号:81901346
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
- 批准号:91949121
- 批准年份:2019
- 资助金额:68.0 万元
- 项目类别:重大研究计划
日粮AFB1在反刍动物肝脏中代谢激活和诱导肝细胞凋亡的分子机理研究
- 批准号:31902187
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
阿司匹林丁香酚酯抗氧化应激致血管内皮细胞凋亡的分子机制
- 批准号:31872518
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 14.34万 - 项目类别:
REVAMP-PH: REpurposing Valsartan May Protect against Pulmonary Hypertension
REVAMP-PH:重新利用缬沙坦可以预防肺动脉高压
- 批准号:
10642368 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别:
Save Kidneys in Cisplatin Chemotherapy by blocking HDAC6
顺铂化疗中通过阻断 HDAC6 拯救肾脏
- 批准号:
10841270 - 财政年份:2023
- 资助金额:
$ 14.34万 - 项目类别: