Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
基本信息
- 批准号:10029359
- 负责人:
- 金额:$ 35.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdvocateBiological ModelsBiophysicsBooksCell CommunicationCell ShapeCellsCongenital AbnormalityCytoskeletal ModelingCytoskeletal ProteinsCytoskeletonDNADataDefectDeltastabDevelopmentDevelopmental BiologyEmbryoEmerging TechnologiesFluorescence MicroscopyFoundationsGene Expression RegulationGeneticGenetic ModelsGenotypeGrowthHeartHumanImageInvestigationLanguageLeadLifeLightMechanical StressMechanicsMicroscopicMicroscopyModernizationMolecularMolecular BiologyMorphogenesisOrganOrganismPatternPhysicsProcessResolutionRestSeminalShapesTechnologyTimeTissuesTreescell behaviorcongenital heart disordergenetic informationimaging informaticsinterdisciplinary approachmorphogenspredictive modelingtooltranscription factor
项目摘要
ABSTRACT
Organ form is vital for organisms to function properly. This is particularly evident for essential organs such as
the human heart where shape defects result in congenital heart disease, a common birth defect. Despite major
efforts, we still lack answers to this simple question: how does DNA encode shape? Developmental and
molecular biology uncovered the principles of how maternal morphogens setup axes and trigger cascades of
gene regulation to precisely determine cell fate patterns. Yet how the interplay of genetic information and
mechanical activity orchestrates interaction of cells that shape organs remains elusive.
In his seminal book “On growth and form” the polymath D'Arcy Thompson advocated for quantitative analysis
of morphogenesis. His ideas where ahead of their time: they predate the genetic revolution, and many tools for
quantitative analysis where missing. This proposal seeks to lay the foundations for quantitative
morphogenesis, revisiting Thompson's agenda armed with the toolkit of the modern era. For a predictive
understanding of morphogenesis, molecular investigation must be extended by quantitative analysis
of tissue dynamics at the organ scale. At the organ scale concepts from physics of collective phenomena
become relevant to study how thousands of cells streamline their `activity' to generate shape. Connecting
developmental biology with physics harbors the promise to uncover new mechanisms at the organ scale. We
know the transcription factors that determine fate, and cytoskeletal proteins that execute cell behaviors. Many
of these players are conserved across a large portion of the tree of life. On the other hand, we learned shape
of materials is determined by physical quantities such as force and mechanical stress. To unfold the full
potential of an interdisciplinary approach, we need new tools bridging the gap between genetic players and
physical quantitates. This approach will lead the way to the principles of morphogenesis.
My team develops break through technology overcoming hurdles of whole organ quantitative analysis. Multi-
view light sheet microscopy enables rapid in toto live imaging at subcellular resolution. Tissue cartography
dives into the rest-frame of curved tissues and generates a panoramic overview, simplifying data handling and
quantitative analysis. We pioneer biophysics-image-informatics to extract quantitative observables from
fluorescence microscopy in the language of physics. Leveraging advanced understanding of the early embryo
in the advanced genetic model system D. melanogaster, we aim for a comprehensive framework predicting
how genotype determines tissue flows during axis elongation. Our approach will have a broad impact: by
connecting development with physics we form the foundation of quantitative morphogenesis.
抽象的
器官形态对于生物体的正常运作至关重要。这对于重要器官尤其明显,例如
人类心脏的形状缺陷会导致先天性心脏病,这是一种常见的出生缺陷。尽管主要
经过努力,我们仍然缺乏这个简单问题的答案:DNA 是如何编码形状的?发育和
分子生物学揭示了母体形态发生素如何设置轴并触发级联的原理
基因调控精确决定细胞命运模式。然而遗传信息如何相互作用
机械活动协调塑造器官的细胞相互作用仍然难以捉摸。
博学家达西·汤普森(D'Arcy Thompson)在他的开创性著作《论成长与形态》中提倡定量分析
的形态发生。他的想法超前于时代:它们早于基因革命,并且有许多工具
缺少定量分析。该提案旨在为定量分析奠定基础
形态发生,用现代工具包重新审视汤普森的议程。对于预测
对形态发生的理解,分子研究必须通过定量分析来扩展
器官尺度的组织动力学。来自集体现象物理学的器官尺度概念
与研究数千个细胞如何简化其“活动”以形成形状相关。正在连接
发育生物学与物理学有望在器官尺度上揭示新机制。我们
了解决定命运的转录因子和执行细胞行为的细胞骨架蛋白。许多
这些玩家的大部分都保存在生命树的很大一部分中。另一方面,我们学习了形状
材料的性能由力和机械应力等物理量决定。来完整展开
跨学科方法的潜力,我们需要新的工具来弥合遗传参与者和
物理定量。这种方法将引导我们了解形态发生的原理。
我的团队开发了突破性技术,克服了整个器官定量分析的障碍。多-
查看光片显微镜能够以亚细胞分辨率快速进行整体实时成像。组织制图
深入研究弯曲组织的静止框架并生成全景概览,简化数据处理和
定量分析。我们开创了生物物理学-图像-信息学领域,从其中提取定量可观测值
物理学语言中的荧光显微镜。利用对早期胚胎的先进理解
在先进的遗传模型系统D. melanogaster中,我们的目标是建立一个全面的框架来预测
基因型如何决定轴伸长过程中的组织流动。我们的方法将产生广泛的影响:
将发展与物理学联系起来,我们形成了定量形态发生的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian J Streichan其他文献
Sebastian J Streichan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian J Streichan', 18)}}的其他基金
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10439851 - 财政年份:2020
- 资助金额:
$ 35.61万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10676186 - 财政年份:2020
- 资助金额:
$ 35.61万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10250508 - 财政年份:2020
- 资助金额:
$ 35.61万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo.
生命物质物理学:从分子到胚胎。
- 批准号:
10582455 - 财政年份:2020
- 资助金额:
$ 35.61万 - 项目类别:
Developing organoid model to study active folding in a human genetic context
开发类器官模型来研究人类遗传背景下的主动折叠
- 批准号:
9810045 - 财政年份:2019
- 资助金额:
$ 35.61万 - 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
- 批准号:
9164331 - 财政年份:2016
- 资助金额:
$ 35.61万 - 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
- 批准号:
9316689 - 财政年份:2016
- 资助金额:
$ 35.61万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 35.61万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 35.61万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 35.61万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 35.61万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 35.61万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 35.61万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 35.61万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 35.61万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 35.61万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 35.61万 - 项目类别:














{{item.name}}会员




