Developing organoid model to study active folding in a human genetic context
开发类器官模型来研究人类遗传背景下的主动折叠
基本信息
- 批准号:9810045
- 负责人:
- 金额:$ 19.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActomyosinAnatomyAnencephalyAnimal ModelArchitectureAtlasesBehaviorBiological ModelsBrainCell Culture TechniquesCellsCellular StructuresCharacteristicsComplexControlled EnvironmentCytoskeletonData AnalysesDefectDevelopmentDevelopmental BiologyDimensionsDiseaseEmbryonic DevelopmentEpitheliumExtracellular SpaceFailureFoundationsGene Expression ProfileGeneticHumanHuman DevelopmentHuman GeneticsImageIn VitroInvestigationKineticsLightLive BirthLungMechanicsMethodsMicrofluidicsModelingMolecularNatural regenerationNeural Tube ClosureNeural tubeNeuronsNew TerritoriesNonmuscle Myosin Type IIAOrganOrganismOrganogenesisOrganoidsPatternPharmaceutical PreparationsPhysicsPositioning AttributeProcessProtocols documentationReproducibilityRoleSHH geneSeveritiesShapesSignal TransductionSpinal DysraphismStem cellsStructureTechnologyTissuesTongueTubeVertebral columnbasebehavior measurementcell behaviorcell typeconvergent extensiondesignflexibilityhuman modelimaging approachin vivoinsightmatrigelmorphogensneural modelneuroepitheliumnoveloverexpressionpreventprogramsquantitative imagingrelating to nervous systemsmall moleculesmoothened signaling pathwaystillbirthtranscription factor
项目摘要
ABSTRACT
Organ shape is critical for the organism to function properly. For the example neural tube, early formation
defects may have devastating consequences to the body. A fundamental building principal in embryogenesis is
first organizing cells into simple structures, such as a closed sheet surrounding a lumen. Cells then undergo
well-concerted programs to reconfigure tissue shape, or fold out of the plane of the sheet. In plane flows
elongate one axis while shortening another during convergent extension. Folding in contrast dramatically
changes tissue form, to endow the organ with its characteristic shape. In neural tube closure, an initially flat
sheet of cells undergoes two sequential bending steps to fold up into a cylindrical tube surrounding a single
lumen. A large body of work uncovered fundamental insights on fate determination. Yet, mechanisms
controlling shape, particularly folding in the context of early human development, remain poorly understood.
At the cellular level genetic patterning coordinates behaviors over long distances to instruct active forces that
underlie folding. Before distilling a physical picture of how forces fold tissue, we need to identify behaviors
leading to folding, and characterize coordination. Organoids harbor promise for studying early development,
disease and regeneration in tightly controlled environments and human genetic background. However,
progress is hampered by technical limitations, due to irregular patterning, and shape. This proposal seeks to
develop a new strategy for designing robust models to study basic mechanisms of human organogenesis.
Using micro patterning we successfully generated highly reproducible organoids with set size, shape, and
formation kinetics. Our approach features flat rectangular shaped sheets that spontaneously fold out of the
plane, and seamlessly close along the short dimension, generating a tube. The resulting platform is high
throughput, compatible with live imaging, and well suited for quantitative data analysis strategies. This setup
recapitulates major steps during neural tube closure in animal model systems, such as hinge formation and a
zippering mechanism with actomyosin cable accompanying closure. Here we aim to adapt existing protocols to
our platform to 1) induce formation of neuroepithelium and more closely model neural tube formation. We then
aim to 2) assemble a quantitative atlas of cell behaviors observed during closure. Finally, we aim to 3) enter
new territory and generate anatomical axes spanning the organoid tube using microfluidics. Our approach
opens up a new path towards controlled models of human organogenesis, using the neural tube as example.
抽象的
器官形状对于生物体正常运行至关重要。对于示例神经管,早期形成
缺陷可能对身体产生毁灭性后果。胚胎发生的基本建筑物主要是
首先将细胞整理成简单的结构,例如围绕管腔的封闭板。然后经过细胞
良好的节目以重新配置组织形状,或从纸张平面上折叠。在平面流中
在收敛延伸过程中缩短另一个轴,同时缩短另一个轴。对比度折叠很大
改变组织形式,以赋予器官特征形状。在神经管闭合中,最初是平坦的
一组细胞经历两个顺序的弯曲步骤,将围绕一个单一的圆柱管折叠成一个
流明。大量的工作发现了对命运决定的基本见解。但是,机制
控制形状,尤其是在早期人类发展的背景下折叠的形状,对形状仍然很少理解。
在细胞水平上
折叠基础。在蒸馏出强力如何折叠组织的物理图片之前,我们需要识别行为
导致折叠并表征协调。类器官港口有望研究早期发展,
在紧密控制的环境和人类遗传背景下的疾病和再生。然而,
由于模式不规则和形状,技术局限性受到了技术限制的阻碍。该提议试图
制定一种新的策略来设计强大的模型来研究人体器官发生的基本机制。
使用微模式,我们成功地生成了具有设定尺寸,形状和形状和
编队动力学。我们的方法具有扁平矩形形状的床单
平面,并沿短尺寸无缝闭合,生成管。最终的平台很高
吞吐量,与实时成像兼容,非常适合定量数据分析策略。此设置
在动物模型系统中,概括神经管闭合期间的主要步骤,例如铰链形成和A
带有肌动蛋白电缆的拉链机制伴随闭合。在这里,我们旨在调整现有协议
我们的平台1)诱导神经上皮的形成,并更紧密地模拟神经管的形成。然后我们
目的是2)组装闭合过程中观察到的细胞行为的定量地图集。最后,我们的目标是3)输入
新区域并生成使用微流体跨器官管的解剖轴。我们的方法
以神经管为例,为受控人体器官发生模型打开了新的路径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian J Streichan其他文献
Sebastian J Streichan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian J Streichan', 18)}}的其他基金
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10439851 - 财政年份:2020
- 资助金额:
$ 19.38万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10029359 - 财政年份:2020
- 资助金额:
$ 19.38万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10676186 - 财政年份:2020
- 资助金额:
$ 19.38万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
- 批准号:
10250508 - 财政年份:2020
- 资助金额:
$ 19.38万 - 项目类别:
Physics of Living Matter: From Molecule to Embryo.
生命物质物理学:从分子到胚胎。
- 批准号:
10582455 - 财政年份:2020
- 资助金额:
$ 19.38万 - 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
- 批准号:
9164331 - 财政年份:2016
- 资助金额:
$ 19.38万 - 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
- 批准号:
9316689 - 财政年份:2016
- 资助金额:
$ 19.38万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10374917 - 财政年份:2021
- 资助金额:
$ 19.38万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10559575 - 财政年份:2021
- 资助金额:
$ 19.38万 - 项目类别:
The Role of Physical Cues in Collective Cell Invasion
物理线索在集体细胞入侵中的作用
- 批准号:
10016201 - 财政年份:2016
- 资助金额:
$ 19.38万 - 项目类别:
The Role of Osmotic Engine in Confined Migration
渗透引擎在密闭迁移中的作用
- 批准号:
8875330 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
The Role of Physical Cues in Collective Cell Invasion
物理线索在集体细胞入侵中的作用
- 批准号:
9753743 - 财政年份:
- 资助金额:
$ 19.38万 - 项目类别: