Physics of Living Matter: From Molecule to Embryo

生命物质物理学:从分子到胚胎

基本信息

项目摘要

ABSTRACT Organ form is vital for organisms to function properly. This is particularly evident for essential organs such as the human heart where shape defects result in congenital heart disease, a common birth defect. Despite major efforts, we still lack answers to this simple question: how does DNA encode shape? Developmental and molecular biology uncovered the principles of how maternal morphogens setup axes and trigger cascades of gene regulation to precisely determine cell fate patterns. Yet how the interplay of genetic information and mechanical activity orchestrates interaction of cells that shape organs remains elusive. In his seminal book “On growth and form” the polymath D'Arcy Thompson advocated for quantitative analysis of morphogenesis. His ideas where ahead of their time: they predate the genetic revolution, and many tools for quantitative analysis where missing. This proposal seeks to lay the foundations for quantitative morphogenesis, revisiting Thompson's agenda armed with the toolkit of the modern era. For a predictive understanding of morphogenesis, molecular investigation must be extended by quantitative analysis of tissue dynamics at the organ scale. At the organ scale concepts from physics of collective phenomena become relevant to study how thousands of cells streamline their `activity' to generate shape. Connecting developmental biology with physics harbors the promise to uncover new mechanisms at the organ scale. We know the transcription factors that determine fate, and cytoskeletal proteins that execute cell behaviors. Many of these players are conserved across a large portion of the tree of life. On the other hand, we learned shape of materials is determined by physical quantities such as force and mechanical stress. To unfold the full potential of an interdisciplinary approach, we need new tools bridging the gap between genetic players and physical quantitates. This approach will lead the way to the principles of morphogenesis. My team develops break through technology overcoming hurdles of whole organ quantitative analysis. Multi- view light sheet microscopy enables rapid in toto live imaging at subcellular resolution. Tissue cartography dives into the rest-frame of curved tissues and generates a panoramic overview, simplifying data handling and quantitative analysis. We pioneer biophysics-image-informatics to extract quantitative observables from fluorescence microscopy in the language of physics. Leveraging advanced understanding of the early embryo in the advanced genetic model system D. melanogaster, we aim for a comprehensive framework predicting how genotype determines tissue flows during axis elongation. Our approach will have a broad impact: by connecting development with physics we form the foundation of quantitative morphogenesis.
摘要 器官形态对生物体的正常运作至关重要。这一点对必要的器官尤其明显,如 人类心脏的形状缺陷会导致先天性心脏病,这是一种常见的出生缺陷。尽管有重大的 尽管我们努力了,但我们仍然没有答案这个简单的问题:DNA是如何编码形成的?发展和 分子生物学揭示了母体形态起源如何建立轴和触发级联反应的原理 精确决定细胞命运模式的基因调控。然而,遗传信息和遗传信息之间的相互作用 机械活动协调形成器官的细胞之间的相互作用仍然难以捉摸。 在他的开创性著作《论生长和形式》中,博学的达西·汤普森主张进行定量分析 形态发生的特征。他的想法走在了时代的前面:它们早于基因革命,以及许多用于 缺失的地方进行了定量分析。这项提议旨在为量化 形态发生,重温汤普森的议程,用现代的工具包武装起来。对于预测性的 理解形态发生,分子研究必须通过定量分析来扩展 器官尺度上的组织动力学。在器官尺度上,来自集体现象物理学的概念 变得与研究数千个细胞如何流线化它们的“活动”以产生形状有关。连接 发育生物学与物理学相结合,有望在器官层面上发现新的机制。我们 了解决定命运的转录因子,以及执行细胞行为的细胞骨架蛋白。许多 在生命之树的很大一部分中,这些玩家是被保存下来的。另一方面,我们学习了形状 材料的强度由力和机械应力等物理量决定。全面展开 跨学科方法的潜力,我们需要新的工具来弥合遗传参与者和 物理量。这种方法将引导我们走上形态发生原理的道路。 我的团队开发了突破整体器官定量分析障碍的技术。多个- 查看光片显微镜可以实现亚细胞分辨率的快速全景实时成像。组织制图学 深入到弯曲组织的静止框架并生成全景概览,简化了数据处理和 定量分析。我们开创了生物物理学-图像-信息学的先河,从 物理语言中的荧光显微镜。利用对早期胚胎的高级理解 在高级遗传模型系统D.Blackogaster中,我们的目标是建立一个全面的框架预测 在轴伸长过程中,基因如何决定组织流动。我们的方法将产生广泛的影响:通过 我们把发展与物理联系起来,形成了定量形态发生的基础。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric control of myosin II orientation during axis elongation.
  • DOI:
    10.7554/elife.78787
  • 发表时间:
    2023-01-30
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Lefebvre MF;Claussen NH;Mitchell NP;Gustafson HJ;Streichan SJ
  • 通讯作者:
    Streichan SJ
A Geometric Tension Dynamics Model of Epithelial Convergent Extension.
上皮收敛延伸的几何张力动力学模型。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claussen,NikolasH;Brauns,Fridtjof;Shraiman,BorisI
  • 通讯作者:
    Shraiman,BorisI
Patterned mechanical feedback establishes a global myosin gradient.
图案化的机械反馈建立了全球肌球蛋白梯度。
  • DOI:
    10.1038/s41467-022-34518-9
  • 发表时间:
    2022-11-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Gustafson, Hannah J.;Claussen, Nikolas;De Renzis, Stefano;Streichan, Sebastian J.
  • 通讯作者:
    Streichan, Sebastian J.
The Geometric Basis of Epithelial Convergent Extension.
上皮会聚延伸的几何基础。
  • DOI:
    10.1101/2023.05.30.542935
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brauns,Fridtjof;Claussen,NikolasH;Wieschaus,EricF;Shraiman,BorisI
  • 通讯作者:
    Shraiman,BorisI
Active cell divisions generate fourfold orientationally ordered phase in living tissue.
  • DOI:
    10.1038/s41567-023-02025-3
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sebastian J Streichan其他文献

Sebastian J Streichan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sebastian J Streichan', 18)}}的其他基金

Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
  • 批准号:
    10439851
  • 财政年份:
    2020
  • 资助金额:
    $ 35.61万
  • 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
  • 批准号:
    10029359
  • 财政年份:
    2020
  • 资助金额:
    $ 35.61万
  • 项目类别:
Physics of Living Matter: From Molecule to Embryo
生命物质物理学:从分子到胚胎
  • 批准号:
    10250508
  • 财政年份:
    2020
  • 资助金额:
    $ 35.61万
  • 项目类别:
Physics of Living Matter: From Molecule to Embryo.
生命物质物理学:从分子到胚胎。
  • 批准号:
    10582455
  • 财政年份:
    2020
  • 资助金额:
    $ 35.61万
  • 项目类别:
Developing organoid model to study active folding in a human genetic context
开发类器官模型来研究人类遗传背景下的主动折叠
  • 批准号:
    9810045
  • 财政年份:
    2019
  • 资助金额:
    $ 35.61万
  • 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
  • 批准号:
    9164331
  • 财政年份:
    2016
  • 资助金额:
    $ 35.61万
  • 项目类别:
Tissue flow genetics: using cartography to reveal forces driving morphogenesis
组织流遗传学:利用制图揭示驱动形态发生的力量
  • 批准号:
    9316689
  • 财政年份:
    2016
  • 资助金额:
    $ 35.61万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 35.61万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 35.61万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 35.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了