Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
基本信息
- 批准号:9381124
- 负责人:
- 金额:$ 35.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlpha CellBindingBiochemicalBiologicalBiological AssayBiological ModelsCandidate Disease GeneCellsChemicalsChronicCollaborationsComplexDevelopmentDiabetes MellitusEngineeringEquilibriumFoundationsFundingGene SilencingGenesGeneticGenetic ScreeningGlucoseGoalsHealthHumanImmune signalingImmune systemInflammationInflammatoryInnate Immune SystemKnowledgeLipidsLogicMacrophage ActivationMalignant NeoplasmsMetabolicMetabolic PathwayModelingMolecularMusObesityPathway interactionsProcessPropertyProteomicsPublic HealthRegulationReporterResearchSeriesShapesSignal PathwaySignal TransductionTechnologyWorkZebrafishdesigndisorder preventiongenetic analysisgenetic manipulationhigh throughput screeninghuman diseaseimmune activationin vivoin vivo imaginginnovationmacrophagemetabolomicsmutantnovelnull mutationpreventreceptorscreeningstemtranscriptomics
项目摘要
Project Summary
Understanding how a cell is switched off and maintains its quiescence is fundamentally as important as how it
is activated. The long-term goal of the proposed research is to determine how cell-intrinsic processes control
and modulate activation states of macrophages in vivo. Because dysregulation and unprovoked activation of
the immune system cause a host of human diseases associated with inappropriate inflammation, deciphering
the molecular networks regulating immune activation normally is critical for addressing these health
challenges. This will lead to new knowledge and technologies needed to harness the properties of
macrophages for disease prevention and treatment. We are leveraging the unique advantages of the highly
tractable vertebrate model system, Danio rerio, for exquisite genetic manipulations, high throughput screening,
and in vivo imaging to dissect the complex relationship between intrinsic metabolic signaling and macrophage
activation.
The proposal encompasses a series of projects that collectively define essential negative regulators and their
functions for keeping the innate immune system in check to maintain a normal equilibrium in macrophages.
The starting basis of our projects stems from emerging evidence that metabolic and immune signaling
pathways intersect to shape immune activation in macrophages, and a discovery of a null mutation in an
intracellular NOD-like receptor (NLR) in zebrafish. A gene inactivation in this novel NLR, nlrc3l, causes
unprovoked macrophage activation possibly due to metabolic dysregulation. The proposal seeks to define the
network of molecular interactions of nlrc3l to understand this very important mechanism that keeps
macrophages in check under normal biological conditions. We are taking a highly integrated approach at
multiple levels-- using differential transcriptomics, proteomics, and metabolomics to inform candidate genes
and pathways that constitute possible interactors and effectors of nlrc3l, and validating interactions using
genetic mutants and biochemical studies. The proposal will also use the power of a forward genetic screen to
discover additional genes akin to nlrc3l that prevent macrophage activation at steady state that act in the same
or completely new pathways. We designed an innovative assay for the screen to assess macrophage
activation using a live-cell reporter for an activation marker irg1. Finally, the proposal will examine the influence
of lipid and glucose metabolic pathways on macrophage activation in zebrafish using genetic analyses and
chemical screening. This work will benefit from collaboration with an expert group in extending our findings to
mouse and human models. Taken together, these projects provide the important foundation for understanding
the genetic and metabolic basis of how the innate immune system is kept in check, and will impact the
direction of my lab far beyond the 5 years of MIRA funding.
项目摘要
了解细胞如何关闭并保持其静止状态,从根本上讲与了解细胞如何关闭并保持其静止状态一样重要。
被激活了这项研究的长期目标是确定细胞内在过程如何控制
并调节体内巨噬细胞的活化状态。因为失调和无端激活
免疫系统导致了许多与不适当的炎症有关的人类疾病,
调节免疫激活的分子网络通常对于解决这些健康问题至关重要。
挑战这将导致新的知识和技术需要利用的性质,
巨噬细胞用于疾病预防和治疗。我们正在利用高度的独特优势,
易于处理的脊椎动物模型系统,斑马鱼,用于精细的遗传操作,高通量筛选,
和体内成像来剖析内在代谢信号和巨噬细胞之间的复杂关系,
activation.
该提案包括一系列项目,这些项目共同定义了基本的负面调节剂及其
其功能是控制先天免疫系统,以维持巨噬细胞的正常平衡。
我们项目的起始基础源于新出现的证据,即代谢和免疫信号传导
通路交叉形成巨噬细胞中的免疫激活,以及在巨噬细胞中发现无效突变。
斑马鱼细胞内NOD样受体(NLR)。这种新型NLR中的基因失活,nlrc 3l,导致
可能由于代谢失调引起的无端巨噬细胞活化。该提案旨在界定
nlrc 3l的分子相互作用网络来理解这个非常重要的机制,
在正常生物学条件下检查巨噬细胞。我们正在采取高度集成的方法,
多层次--使用差异转录组学、蛋白质组学和代谢组学来告知候选基因
以及构成nlrc 3l的可能的相互作用物和效应物的途径,并使用
基因突变和生化研究。该提案还将利用遗传筛查的力量,
发现类似于nlrc 3l的其他基因,其在稳定状态下防止巨噬细胞活化,
或全新的路径。我们设计了一种创新的检测方法来评估巨噬细胞
使用活细胞报告子对活化标记IRG 1进行活化。最后,该提案将审查
脂质和葡萄糖代谢途径对斑马鱼巨噬细胞活化的影响,
化学筛选这项工作将受益于与一个专家组的合作,
小鼠和人类模型。综合起来,这些项目为理解
先天免疫系统如何保持控制的遗传和代谢基础,并将影响
我的实验室的方向远远超出了5年的MIRA资金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Celia E Shiau其他文献
Celia E Shiau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Celia E Shiau', 18)}}的其他基金
Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
- 批准号:
10219297 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
- 批准号:
10406089 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
- 批准号:
10459911 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
- 批准号:
10649609 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
- 批准号:
10796503 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
- 批准号:
9978893 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Genetic and metabolic regulation of macrophage activation at steady state
巨噬细胞稳态激活的遗传和代谢调控
- 批准号:
10809141 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Genetic dissection of the role of macrophages in axonal myelination in zebrafish
巨噬细胞在斑马鱼轴突髓鞘形成中作用的遗传解析
- 批准号:
8022895 - 财政年份:2010
- 资助金额:
$ 35.57万 - 项目类别:
Genetic dissection of the role of macrophages in axonal myelination in zebrafish
巨噬细胞在斑马鱼轴突髓鞘形成中作用的遗传解析
- 批准号:
8220765 - 财政年份:2010
- 资助金额:
$ 35.57万 - 项目类别:
Genetic dissection of the role of macrophages in axonal myelination in zebrafish
巨噬细胞在斑马鱼轴突髓鞘形成中作用的遗传解析
- 批准号:
7806748 - 财政年份:2010
- 资助金额:
$ 35.57万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 35.57万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 35.57万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 35.57万 - 项目类别:
Deciphering alpha-cell heterogeneity using a novel reporter mouse
使用新型报告小鼠解读α细胞异质性
- 批准号:
20K08895 - 财政年份:2020
- 资助金额:
$ 35.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




