High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
基本信息
- 批准号:9393119
- 负责人:
- 金额:$ 55.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-10 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAnatomyAngiographyAtherosclerosisBlood VesselsBrainBreastBuffersCancer DetectionCancer ModelClinicClinicalClinical ResearchCollaborationsComputer softwareContrast MediaDataDetectionDevelopmentDiagnosticDimensionsEngineeringExhibitsFDA approvedFPS-FES OncogeneFingerprintFrequenciesHourHumanImageImaging TechniquesImaging technologyIndustrializationLesionMalignant - descriptorMalignant NeoplasmsMethodsMicroscopyMorphologyMotionMotivationNatureNorth CarolinaPaperPerformanceProstatePublic HealthPublishingRattusResearch PersonnelResolutionRodentRodent ModelSafetyScientistSeminalSensitivity and SpecificitySliceSpecificityStreamSystemTechniquesTechnologyTestingThree-Dimensional ImageThree-Dimensional ImagingThyroid GlandTimeTissuesTransducersTranslatingUltrasonographyUniversitiesWorkWound Healingangiogenesisbasecancer imagingclinical applicationclinically relevantclinically translatablecomputerized data processingcontrast enhancedcontrast imagingcostdata acquisitiondensitydesigndesign and constructionhuman diseaseimage processingimaging approachimaging modalityimprovedin vivoinnovationnew growthnew technologynext generationnovelnovel strategiesoncologyoptical imagingportabilitypreclinical studyrapid growthresponsesarcomastandard of caretargeted biomarkertumortumor growthvasa vasorumvector
项目摘要
ABSTRACT
Recently, the revolutionary technology of super localization microscopy in the optical imaging domain
has been translated into the medical ultrasound domain. By localizing the centers of scattering contrast agents,
a similar ultrasound localization microscopy technique, also referred to as contrast enhanced super-resolution
(CESR) imaging, has been demonstrated with ultrasound. This novel technique enables imaging of microvessels
at resolutions as small as ten micrometers, over an order of magnitude smaller than the ultrasound diffraction
limit, and at depths much greater than traditionally limited by frequency. In order to achieve advances in all three
of these seeming paradoxical dimensions - super-resolution contrast imaging requires that thousands of frames
of data to be analyzed, making this technique much slower than standard ultrasound imaging. The result is that
super-resolution imaging would be difficult if not impossible to translate to the clinic in its current form with current
clinical hardware, especially if 3-D imaging is desired (which it is for microvascular morphological analysis), as
a single 3-D image volume would take tens of minutes to acquire.
However, there is a solution to this, which our group proposes to achieve in this project. Recent advances
in ultrasound hardware have enabled ultra-high frame rate processing. Our academic and clinical teams at UNC
Chapel Hill are partnering with Verasonics, Inc, a world leading industrial partner in next-generation ultrasound
systems, to develop and translate the first high-frame rate 3-D super resolution imaging modality to the clinic.
We will do this by first designing and constructing a 1024 channel ultra-high frame rate ultrasound system,
designed to operate with a 32x32 matrix transducer. Ultra-fast processors, large RAM buffers, GPUs, and high-
bandwidth data transfer hardware will be utilized to handle the massive data acquisition and processing. New
software and implementation approaches designed at UNC, including our innovative adaptive multi-focus
beamforming approach, will further increase sensitivity and resolution at clinically relevant depths, and enable
full 3-D volume acquisitions at volume frame rates over 5000 FPS, suitable for fast 3-D super-resolution imaging
in humans. Our approach will be validated in phantoms, rodent models of human disease, and in two different
clinical applications where ultrasound specificity is limited, breast, and thyroid.
Our motivation is to develop super-resolution imaging as a novel new approach for imaging angiogenesis
– one of the hallmarks of cancer, as a new biomarker target for both diagnostics and assessment of response to
therapy. The ability to differentiate lesions based on microvascular fingerprint, rather than tumor anatomy, would
be a paradigm shift in ultrasound diagnostics, and will improve the specificity of ultrasound to malignancy, and
advance clinically needed in breast, prostate, thyroid, and other oncological applications. However, the
advancement of the proposed technology will undoubtedly open doors to other clinical applications as well, such
as wound healing and vasa vasorum imaging in atherosclerosis.
抽象的
最近,光学成像域中的超级定位显微镜的革命性技术
已转化为医疗超声域。通过定位散射对比剂的中心,
类似的超声定位显微镜技术,也称为对比度增强的超分辨率
(CESR)成像已通过超声证明。这种新颖的技术使微观复温成像
在小至十微米的分辨率下,比超声衍射小的数量级
限制,在深度比传统上受频率限制的限制要大得多。为了在这三个方面取得进步
在这些看起来矛盾的维度中 - 超分辨率对比成像需要数千帧
要分析的数据,使该技术比标准超声成像慢得多。结果是
即使不是不可能以当前形式转化为诊所,超分辨率成像将很难
临床硬件,尤其是在需要3-D成像的情况下(这是用于微血管形态学分析)的
单个3-D图像量将需要数十分钟才能获取。
但是,有一个解决方案,我们的小组建议在该项目中要实现这一问题。最近的进步
在超声波中,硬件已启用了超高帧速率处理。我们在UNC的学术和临床团队
Chapel Hill与Verasonics,Inc合作,Verasonics,Inc,下一代超声波的世界领先工业合作伙伴
系统,将第一个高帧速率3-D超级分辨率成像模式转换为诊所。
我们将首先设计和构建1024通道超高帧速率超声系统,
设计用于使用32x32矩阵传感器进行操作。超快速处理器,大型RAM缓冲区,GPU和高级
带宽数据传输硬件将用于处理大规模的数据采集和处理。新的
在UNC设计的软件和实施方法,包括我们创新的自适应多对焦
波束形成方法,将进一步提高临床相关深度的灵敏度和分辨率,并启用
以超过5000 fps的体积帧速率以超过5000 fps的体积框架采集,适用于快速3-D超分辨率成像
在人类中。我们的方法将在幻影,人类疾病的啮齿动物模型中得到验证,并在两种不同的
超声特异性有限,乳房和甲状腺的临床应用。
我们的动机是开发超分辨率成像,作为一种新型的新方法,用于成像血管生成
- 癌症的标志之一,是诊断和评估的新生物标志物靶标
治疗。根据微血管指纹而不是肿瘤解剖学区分病变的能力,将
成为超声诊断的范式转变,并将提高超声对恶性肿瘤的特异性,并
乳房,前列腺,甲状腺和其他肿瘤学应用中所需的临床需要。但是,
拟议技术的进步无疑也将向其他临床应用打开大门
作为动脉粥样硬化中的伤口愈合和Vasa vasorum成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul A Dayton其他文献
Paul A Dayton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul A Dayton', 18)}}的其他基金
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
9979314 - 财政年份:2020
- 资助金额:
$ 55.17万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10375345 - 财政年份:2020
- 资助金额:
$ 55.17万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10092130 - 财政年份:2020
- 资助金额:
$ 55.17万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
9978579 - 财政年份:2018
- 资助金额:
$ 55.17万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10632112 - 财政年份:2018
- 资助金额:
$ 55.17万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10402933 - 财政年份:2018
- 资助金额:
$ 55.17万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10163814 - 财政年份:2018
- 资助金额:
$ 55.17万 - 项目类别:
Acoustic Angiography Using Dual-Frequency and Ultrawideband CMUT Arrays
使用双频和超宽带 CMUT 阵列的声学血管造影
- 批准号:
9899252 - 财政年份:2018
- 资助金额:
$ 55.17万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10478978 - 财政年份:2017
- 资助金额:
$ 55.17万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10249991 - 财政年份:2017
- 资助金额:
$ 55.17万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Advancing Photoacoustic Tomography in breast imaging to predict response in breast cancers treated with neoadjuvant therapy
推进乳腺成像中的光声断层扫描以预测新辅助治疗乳腺癌的反应
- 批准号:
10715163 - 财政年份:2023
- 资助金额:
$ 55.17万 - 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
- 批准号:
10666001 - 财政年份:2023
- 资助金额:
$ 55.17万 - 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 55.17万 - 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 55.17万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 55.17万 - 项目类别: