Ultrastructural analysis of melanopsin-containing retinal ganglion cells using a novel approach

使用新方法对含黑视蛋白的视网膜神经节细胞进行超微结构分析

基本信息

  • 批准号:
    9256679
  • 负责人:
  • 金额:
    $ 4.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY A connectome is a comprehensive map of the synaptic connections in a neural circuit. Connectomic analysis of a neural circuit provides a foundation for understanding its organization and specific functions. However, constructing a fully-mapped connectome is a difficult task. Technological advances have led to the generation of new tools for connectomic mapping. Serial-section electron micrographs compiled into a 3-dimensional volume produce a digitized piece of tissue full of cell-types and micro-circuits to explore. However, using this approach to ask a targeted question remains challenging. Up to this point, a major barrier in connectomic research was the lack of a dependable, genetic marker for electron microscopy. Finally, we have succeeded in producing this tool. I have held a primary role in the production and validation of an innovative tool enabling targeted connectomic analysis of genetically-specified neurons. Our tool uses cre-lox technology to label targeted cells with robust markers visible at both the light and electron microscopic level. Fluorescent markers revolutionized the study of neural circuits at the light level, and our novel tool brings these same advantages to the ultrastructural level. My pilot data show expected patterns of cell-type-specific labeling at both the light and electron microscopic level, suggesting feasibility of targeted connectomic analysis. Moving forward, my goals are to 1) test the efficacy of this approach in mapping neural circuits and 2) exploit our tool to elucidate the connectivity of intrinsically photosensitive ganglion cells (ipRGCs) in the retina and brain. ipRGCs are a specialized class of retinal ganglion cells (RGCs) differing from conventional RGCs in both their response properties and axonal terminations. While most RGCs send fast, transient signals encoding image forming features, ipRGCs send slow, sustained signals encoding irradiance, or global light intensity. ipRGC axons terminate in non-image forming regions of the brain where irradiance signals are used to regulate circadian rhythms and pupil dilation. Although the general anatomy and physiology of ipRGCs is well documented, we lack a detailed description of their connectivity. I plan to use our novel tool to conduct a connectomic analysis of ipRGC circuitry. The use of this tool will illuminate the structural connectivity underlying irradiance coding circuits and elucidate the function of the non-canonical ipRGC inputs to the image forming visual pathway. Overall, this proposal will validate our tool for targeted connectomics, prior to its dispersal in the scientific community, and provide valuable insight into the processing and modulation of sensory information through neural circuits.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Megan Lynn Leyrer Snell其他文献

Megan Lynn Leyrer Snell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
  • 批准号:
    10678248
  • 财政年份:
    2023
  • 资助金额:
    $ 4.4万
  • 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
  • 批准号:
    10681939
  • 财政年份:
    2023
  • 资助金额:
    $ 4.4万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10427574
  • 财政年份:
    2022
  • 资助金额:
    $ 4.4万
  • 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
  • 批准号:
    10607392
  • 财政年份:
    2022
  • 资助金额:
    $ 4.4万
  • 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
  • 批准号:
    10609909
  • 财政年份:
    2022
  • 资助金额:
    $ 4.4万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10675646
  • 财政年份:
    2022
  • 资助金额:
    $ 4.4万
  • 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
  • 批准号:
    457552
  • 财政年份:
    2021
  • 资助金额:
    $ 4.4万
  • 项目类别:
    Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
  • 批准号:
    10331361
  • 财政年份:
    2020
  • 资助金额:
    $ 4.4万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10623306
  • 财政年份:
    2020
  • 资助金额:
    $ 4.4万
  • 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
  • 批准号:
    10376866
  • 财政年份:
    2020
  • 资助金额:
    $ 4.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了