Integrated miRNA regulation of Nox4 and cellular redox state in vascular disease
血管疾病中 Nox4 和细胞氧化还原状态的整合 miRNA 调节
基本信息
- 批准号:9316697
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-18 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:ApoptosisBiologicalBlood VesselsCardiovascular DiseasesCarotid ArteriesCell Differentiation processCell physiologyCellsCellular biologyCouplesDataDevelopmentDifferentiation AntigensDiseaseDisulfidesEndoplasmic ReticulumEventFoundationsFutureGene ExpressionGenesGenetic TranscriptionGlutathioneGoalsHomeostasisHumanHydrogen PeroxideHyperplasiaIndividualInflammationInjuryIon ChannelMalignant NeoplasmsMediatingMessenger RNAMicroRNAsMitochondriaMolecularMuscle CellsNADPH OxidaseOrganellesOxidantsOxidasesOxidation-ReductionOxidative StressPhenotypePilot ProjectsProtein IsoformsProteinsRNA SplicingReactionReactive Oxygen SpeciesReceptor Protein-Tyrosine KinasesRegulationReportingResearchSecond Messenger SystemsSignal TransductionSignal Transduction PathwaySmooth Muscle MyocytesSulfhydryl CompoundsSumSystemTestingVascular DiseasesVascular Smooth MuscleWorkin vivoinnovationinsightnoveloxidationprogramspublic health relevanceresponseresponse to injurysenescencetherapeutic target
项目摘要
DESCRIPTION (provided by applicant): It is the integration of both redox signaling and the intracellular redox state that determines cellular response by coordinating multiple signaling networks. The long-term goal of our research program is to understand how NADPH oxidases can be manipulated to treat cardiovascular diseases. We have reported that Nox4 NADPH oxidase modifies diverse cellular responses. However, the molecular mechanisms by which Nox4 regulate cellular functions are poorly understood. Nox4 is expressed in cellular organelles whose functions are susceptible to changes in the redox potential. In contrast to the other Nox homologs, it is unlikely that Nox4-derived reactive oxygen species function as second messengers since 1) Nox4 is constitutively active; 2) activation of Nox4 is primarily regulated by its expression level; and 3) the reaction between thiols and H2O2 (the primary product of Nox4) is too slow to be of biological relevance. In pilot studies, we made the novel observations that 1)
microRNA-9 (miR-9) is a novel regulator of Nox4 expression; 2) miR-25 induces expression of miR-9; 3) miR-9 elicits changes in Nox4 mRNA splicing; 4) miR-25 and miR-9 levels increase following vascular injury; and 5) changes in Nox4 levels modify the cellular glutathione redox potential and protein thiol status. We therefore hypothesize that miRNA-mediated changes in Nox4 expression dynamically regulate the cellular redox state and coordinate the expression of genes implicated in the development of vascular disease. Aim 1 will test the hypothesis that miR-induced miR expression mediates changes in Nox4 levels, cellular localization, and SMC activation. We will first determine the mechanism by which both miR-25 and miR-9 are required for decreasing Nox4 protein levels. We will then test the hypothesis that miR-9 alters the splice isoform profile and subcellular distribution of Nox4. Next, we will explore the mechanism by which miR-25 induces miR-9 expression. Finally, we will determine whether miR-9 modifies vascular smooth muscle cell (SMC) differentiation and the vascular response to injury. Aim 2 will test the hypothesis that Nox4 dynamically regulates the cellular redox state and transcriptional activity in cultured SMC and in the vessel wall. Proposed studies will determine the effect of changes in Nox4 expression on cellular thiol-disulfide status, the redox potential in different cellular compartments, and on the transcription of redox-sensitive genes. In vivo studies will explore how changes in SMC Nox4 modify vascular redox state and neointimal hyperplasia. This proposal is innovative in that we introduce a new paradigm whereby Nox4 acts as a redox rheostat, establishing the thiol oxidation state of cellular proteins to coordinate signaling event. These data may provide a unifying mechanism for the diverse and ambiguous functions of Nox4 across multiple biologic systems. Our data will be the first to provide evidence that one miRNA is indirectly induced by another miRNA. Finally, our findings will provide crucial insights into whether Nox4, miR-9, and miR-25 are therapeutic targets in vascular disease.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FRANCIS J MILLER其他文献
FRANCIS J MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FRANCIS J MILLER', 18)}}的其他基金
Regulation of the Nox1 NADPH Oxidase in Vascular Smooth Muscle Cells
血管平滑肌细胞中 Nox1 NADPH 氧化酶的调节
- 批准号:
8330396 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Regulation of the Nox1 NADPH Oxidase in Vascular Smooth Muscle Cells
血管平滑肌细胞中 Nox1 NADPH 氧化酶的调节
- 批准号:
8698326 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Regulation of the Nox1 NADPH Oxidase in Vascular Smooth Muscle Cells
血管平滑肌细胞中 Nox1 NADPH 氧化酶的调节
- 批准号:
8452589 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Regulation of the Nox1 NADPH Oxidase in Vascular Smooth Muscle Cells
血管平滑肌细胞中 Nox1 NADPH 氧化酶的调节
- 批准号:
9138279 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Glutathione Peroxidase & Redox State in Atherosclerosis
谷胱甘肽过氧化物酶
- 批准号:
7840754 - 财政年份:2009
- 资助金额:
$ 29.99万 - 项目类别:
Glutathione Peroxidase & Redox State in Atherosclerosis
谷胱甘肽过氧化物酶
- 批准号:
7122935 - 财政年份:2005
- 资助金额:
$ 29.99万 - 项目类别:
Glutathione Peroxidase & Redox State in Atherosclerosis
谷胱甘肽过氧化物酶
- 批准号:
6962111 - 财政年份:2005
- 资助金额:
$ 29.99万 - 项目类别:
Glutathione Peroxidase & Redox State in Atherosclerosis
谷胱甘肽过氧化物酶
- 批准号:
7468505 - 财政年份:2005
- 资助金额:
$ 29.99万 - 项目类别:
Glutathione Peroxidase & Redox State in Atherosclerosis
谷胱甘肽过氧化物酶
- 批准号:
7278644 - 财政年份:2005
- 资助金额:
$ 29.99万 - 项目类别:
Glutathione Peroxidase & Redox State in Atherosclerosis
谷胱甘肽过氧化物酶
- 批准号:
7671263 - 财政年份:2005
- 资助金额:
$ 29.99万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Research Grant