Identifying Adaptive and Maladaptive Responses in the Human Connectome to Inhibitory Control Challenges

识别人类连接组对抑制控制挑战的适应性和适应不良反应

基本信息

  • 批准号:
    9360936
  • 负责人:
  • 金额:
    $ 24.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

ABSTRACT The capacity for self-control is one of the strongest predictors of psychological and physical well-being, with researchers estimating that 80-90% of self-control in everyday life relies on inhibitory processes. Poor inhibitory control negatively impacts health in numerous ways, including by increasing engagement in risky and impulsive behaviors that are associated with premature death and disease (e.g., reckless driving, unsafe sexual practices, aggression, binge eating). Notably, inhibitory control failure is a transdiagnostic feature of a diverse array of mental disorders (e.g., posttraumatic stress, substance use, impulse control disorders) and other harmful behaviors (e.g., suicide, violence). While it is known that inhibitory failures occur reliably more often in specific cognitive, motivational, and emotional contexts, particularly in mental illness, how such contexts impact the functional brain networks supporting inhibitory control remains largely unknown. The long- term goal of this research is to harness knowledge about the brain mechanisms of inhibition to advance etiological models of mental disorders. The objective of this proposal is to determine how functional brain networks supporting inhibitory control respond to situational challenges and to evaluate the relevance of these network adaptations for predicting self-control, psychopathology symptoms, and risky behavior. The specific aims of the proposal are to: 1) determine how functional networks adapt to contextual challenges (cognitive resource depletion, competing reward cues, negative mood induction) during inhibitory control tasks, 2) establish the validity and replicability of shifts in the functional connectome in response to contextual challenges, 3) evaluate whether context-related shifts in functional network organization predict self-control, vulnerabilities for psychopathology, and risky behavior in healthy controls, and 4) examine functional connectome metrics of inhibitory control in clinical samples. The study design involves new data collection on two cohorts: a sample of healthy controls (N = 100) and a clinical sample of individuals with a history of mental health treatment (N = 50). The healthy control sample will be assessed at two time points approximately three months apart. All participants will undergo MRI scanning and a thorough clinical/ behavioral assessment to assess self-regulation, vulnerabilities for psychopathology, psychiatric symptoms, and risky behaviors. The knowledge gained from the proposed research has the potential to significantly advance current models of inhibition by delineating how the neural networks supporting self-control flexibly adapt to situational challenges and confer risk for psychopathology and risky behaviors.
摘要 自我控制能力是心理和身体健康的最强预测因素之一, 研究人员估计,日常生活中80%-90%的自我控制依赖于抑制过程。穷 抑制性控制以多种方式对健康产生负面影响,包括增加对高风险和 与过早死亡和疾病有关的冲动行为(例如,鲁莽驾驶、不安全 性行为、侵略性、暴饮暴食)。值得注意的是,抑制控制失败是一种跨诊断特征 各种精神障碍(例如,创伤后应激、药物使用、冲动控制障碍)和 其他有害行为(如自杀、暴力)。虽然已知抑制故障更可靠地发生 通常在特定的认知、动机和情感背景下,特别是在精神疾病中,如何 背景对支持抑制控制的大脑功能网络的影响在很大程度上仍不清楚。长的- 这项研究的学期目标是利用关于抑制的大脑机制的知识来推进 精神障碍的病因学模型。这项提议的目标是确定大脑的功能如何 支持抑制控制的网络应对情景挑战并评估这些挑战的相关性 用于预测自我控制、精神病理症状和危险行为的网络适应。具体的 该提案的目的是:1)确定功能网络如何适应环境挑战(认知 资源耗尽、相互竞争的奖励线索、消极情绪诱导)在抑制控制任务中,2) 确定功能连接体中的改变响应于上下文的有效性和可重复性 挑战,3)评估职能网络组织中与情境相关的变化是否预示着自我控制, 精神病理学的脆弱性,以及健康对照中的危险行为,以及4)检查功能 临床样本中抑制控制的连接组指标。研究设计涉及到新的数据收集 两个队列:一个是健康对照样本(N=100),另一个是有精神病史的临床样本 健康治疗(N=50)。健康对照样本将在两个时间点进行评估,大约三个时间点 相隔几个月。所有参与者都将接受MRI扫描和全面的临床/行为评估,以 评估自我管理、精神病理学的脆弱性、精神症状和危险行为。这个 从拟议的研究中获得的知识有可能显著推进当前的模型 通过描绘支持自我控制的神经网络如何灵活地适应情景挑战来抑制 并为精神病理学和危险行为提供风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naomi Samimi-Sadeh其他文献

Naomi Samimi-Sadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naomi Samimi-Sadeh', 18)}}的其他基金

Adaptive and Maladaptive Neural Network Responses to Inhibitory Challenges
自适应和适应不良神经网络对抑制性挑战的反应
  • 批准号:
    10318933
  • 财政年份:
    2019
  • 资助金额:
    $ 24.27万
  • 项目类别:
Adaptive and Maladaptive Neural Network Responses to Inhibitory Challenges
自适应和适应不良神经网络对抑制性挑战的反应
  • 批准号:
    9903467
  • 财政年份:
    2019
  • 资助金额:
    $ 24.27万
  • 项目类别:
Adaptive and Maladaptive Neural Network Responses to Inhibitory Challenges
自适应和适应不良神经网络对抑制性挑战的反应
  • 批准号:
    10542339
  • 财政年份:
    2019
  • 资助金额:
    $ 24.27万
  • 项目类别:
Attention-Emotion Interactions in Psychopathy
精神病中的注意力-情绪相互作用
  • 批准号:
    7672837
  • 财政年份:
    2009
  • 资助金额:
    $ 24.27万
  • 项目类别:
Attention-Emotion Interactions in Psychopathy
精神病中的注意力-情绪相互作用
  • 批准号:
    7882317
  • 财政年份:
    2009
  • 资助金额:
    $ 24.27万
  • 项目类别:

相似海外基金

Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
  • 批准号:
    EP/Y03726X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Affective Computing Models: from Facial Expression to Mind-Reading ("ACMod")
情感计算模型:从面部表情到读心术(“ACMod”)
  • 批准号:
    EP/Z000025/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Research Grant
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
  • 批准号:
    BB/X014673/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Research Grant
Interface: Transplants, Aesthetics and Technology (Previously About Face: The affective and cultural history of face transplants)
界面:移植、美学和技术(之前关于面部:面部移植的情感和文化历史)
  • 批准号:
    MR/Y011627/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Fellowship
Affective and Immaterial Labour in Latin(x) American Culture
拉丁美洲文化中的情感和非物质劳动
  • 批准号:
    AH/V015834/2
  • 财政年份:
    2023
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Fellowship
Home/bodies: Exploring the affective experiences of people at home using scenographic practice and ecological thinking
家/身体:利用场景实践和生态思维探索人们在家中的情感体验
  • 批准号:
    2888014
  • 财政年份:
    2023
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Studentship
Imagination under Racial Capitalism: the Affective Salience of Racialised and Gendered Tropes of 'Black excellence'
种族资本主义下的想象力:“黑人卓越”的种族化和性别化比喻的情感显着性
  • 批准号:
    2889627
  • 财政年份:
    2023
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Studentship
Tracing the brain mechanisms of affective touch.
追踪情感触摸的大脑机制。
  • 批准号:
    23K19678
  • 财政年份:
    2023
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了