Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
基本信息
- 批准号:9381909
- 负责人:
- 金额:$ 40.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AutophagocytosisBiochemistryBiologyCell NucleusCell physiologyCellsChemicalsComplexCytoplasmCytoplasmic ProteinDiabetes MellitusDiseaseEnzymesEukaryotic CellGenetic TranscriptionGoalsHomeostasisLinkMalignant NeoplasmsMammalsMetabolicModificationNerve DegenerationNuclear ProteinNuclear ProteinsO-GlcNAc transferaseObesityOrganellesOrganismPathway interactionsPharmaceutical PreparationsPlayProtein GlycosylationProteinsQuality ControlRoleSignal TransductionSystemVisioncancer cellchemotherapyglycosylationhuman diseaseinhibitor/antagonistnovelpreventprotein degradationscreeningstructural biologysugartooltumor
项目摘要
Project Abstract
The overall goal of the lab is to study the role of energy homeostasis pathways in human disease using
structural and chemical tools. Our lab focuses on two major fundamental pathways: O-GlcNAcylation and
autophagy. The first major focus on the lab is on glycosylation, which plays a fundamental role in living organisms
and is misregulated in several human diseases. A unique form of glycosylation in mammals involves the essential
enzyme O-GlcNAc transferase (OGT), which dynamically transfers a single sugar on to nuclear and cytoplasmic
proteins to modulate signaling, transcription, and protein degradation. This single enzyme is responsible for
glycosylating over a thousand substrates. Aberrant OGT activity is associated with human diseases such as
cancer, diabetes, obesity, and neurodegeneration. However, the biology of this modification is quite complex
because of the abundance of substrates for a single enzyme. This complexity has prevented an understanding
of which substrates are important for human diseases, how OGT recognizes them, and how metabolic changes
alter the physiology of cells through this enzyme. We seek to better understand the mechanism of this
fundamental enzyme through a combination of biochemistry, structural biology, and chemical biology. Our major
goal is to clarify the complex role that nuclear and cytoplasmic protein glycosylation has in human disease.
Autophagy is a conserved pathway that eukaryotic cells use to recycle materials from proteins to whole
organelles for energy and quality control. It has recently been shown that cancer cells rely on autophagy to
satisfy their increased energy demands and to resist chemotherapy. To study autophagy, our major goals are
developing new chemical inhibitors of a key enzyme that initiates autophagy called ULK1. Our other goal is to
find novel synthetic lethal interactors with autophagy by discovering other drugs that synergistically target cells
when autophagy is inhibited. Our vision is to develop advance screening systems to better mimic tumors and
look for new combinations of treatment that rely on blocking autophagy.
项目摘要
该实验室的总体目标是研究能量稳态途径在人类疾病中的作用,
结构和化学工具。我们的实验室专注于两个主要的基本途径:O-GlcNAcylation和
自噬实验室的第一个主要重点是糖基化,它在生物体中起着基础作用
并且在几种人类疾病中被错误调节。哺乳动物中糖基化的一种独特形式涉及必需的
酶O-GlcNAc转移酶(OGT),其动态地将单个糖转移到细胞核和细胞质上
蛋白质来调节信号传导、转录和蛋白质降解。这种单一的酶负责
糖基化超过一千种底物。异常的OGT活性与人类疾病相关,
癌症、糖尿病、肥胖症和神经退化。然而,这种修改的生物学是相当复杂的
因为单一酶的底物丰富。这种复杂性阻碍了我们理解
哪些底物对人类疾病很重要,OGT如何识别它们,以及代谢如何变化
通过这种酶改变细胞的生理机能。我们试图更好地理解这一机制,
通过生物化学、结构生物学和化学生物学的结合,研究基本酶。我们的主要
目的是阐明细胞核和细胞质蛋白糖基化在人类疾病中的复杂作用。
自噬是真核细胞利用的一种保守的途径,用于将物质从蛋白质回收到整体
用于能量和质量控制的细胞器。最近的研究表明,癌细胞依赖于自噬,
满足他们增加的能量需求并抵抗化疗。为了研究自噬,我们的主要目标是
开发一种新的化学抑制剂,抑制一种叫做ULK1的启动自噬的关键酶。我们的另一个目标是
通过发现协同靶向细胞的其他药物,发现与自噬作用的新型合成致命相互作用物
当自噬被抑制时。我们的愿景是开发先进的筛查系统,以更好地模拟肿瘤,
寻找依靠阻断自噬的新的治疗组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Block Lazarus其他文献
Michael Block Lazarus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Block Lazarus', 18)}}的其他基金
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10194214 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10380139 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9752600 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10769149 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
10226148 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10405224 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10662232 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic Disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10682910 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
相似海外基金
Supporting low-income student success in STEM through community, mentoring, and immersive research in biology and biochemistry
通过生物学和生物化学领域的社区、指导和沉浸式研究,支持低收入学生在 STEM 方面取得成功
- 批准号:
2221216 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
Biochemistry, Cellular and Molecular Biology Program: JHU BioGREAT (Biomedical Graduate REsiliency & Adaptability Training)
生物化学、细胞和分子生物学项目:JHU BioGREAT(生物医学研究生 REsiliency
- 批准号:
10810143 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Supporting Biology, Biochemistry, Chemistry and Forensic Science Majors through a Mentorship Network and Career Exploration in STEM
通过导师网络和 STEM 职业探索支持生物学、生物化学、化学和法医学专业
- 批准号:
2221067 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
Chemistry-Biochemistry-Biology Interface (CBBI) Program at Notre Dame
圣母大学化学-生物化学-生物学接口(CBBI)项目
- 批准号:
10624273 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Biochemistry, Cellular and Molecular Biology Program
生物化学、细胞和分子生物学项目
- 批准号:
10650714 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
SpySwitches: switchable SpyCatcher interactions yielding a modular toolbox for biochemistry and cell biology
SpySwitches:可切换的 SpyCatcher 交互,为生物化学和细胞生物学提供模块化工具箱
- 批准号:
BB/T004983/2 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant
Supporting Low-Income Students Studying Biology, Chemistry, and Biochemistry from First Year to Graduation in Rural Wisconsin
支持威斯康星州农村地区低收入学生从一年级到毕业学习生物学、化学和生物化学
- 批准号:
2220586 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
Biochemistry, Cellular and Molecular Biology Program
生物化学、细胞和分子生物学项目
- 批准号:
10332103 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Pre-doctoral Training in Fundamental Approaches to Biochemistry and Cell and Molecular Biology
生物化学、细胞和分子生物学基础方法的博士前培训
- 批准号:
10205194 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Pre-doctoral Training in Fundamental Approaches to Biochemistry and Cell and Molecular Biology
生物化学、细胞和分子生物学基础方法的博士前培训
- 批准号:
10620298 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别: