Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic Disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
基本信息
- 批准号:10682910
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAdministrative SupplementAffectAlzheimer&aposs DiseaseAmericanAmino AcidsAttentionAutophagocytosisBindingBinding SitesBiochemistryBiological AssayBiologyBrain DiseasesCaloric RestrictionCause of DeathCellsChemicalsClinicalCollaborationsCommunitiesComplexCrystallizationCrystallographyDegradation PathwayDevelopmentDiabetes MellitusDiseaseDisease ProgressionDisease modelDissociationEnzyme Inhibitor DrugsEnzymesFRAP1 geneFamilyFamily memberFunctional disorderFundingFutureGenerationsGenetic DiseasesGoalsHomeostasisHumanHuman BiologyHuman PathologyInborn Errors of MetabolismLinkLysineMalignant NeoplasmsMammalian CellMeasuresMentorsMetabolicMetabolic DiseasesMetabolic PathwayMethionineMolecularNerve DegenerationNeurodegenerative DisordersNeuronsNutrientO-GlcNAc transferaseOrganellesPathogenesisPathway interactionsPatientsPharmaceutical ChemistryPharmaceutical PreparationsPhosphotransferasesPositioning AttributePostdoctoral FellowPrevalenceProteinsQuality ControlRecyclingResearchResolutionRoentgen RaysRoleS-AdenosylhomocysteineS-AdenosylmethionineSchizophreniaSignal PathwaySignal TransductionSiteStarvationStructureSystemUnited StatesVisionWorkassay developmentbiophysical techniquesdetection of nutrientdrug discoveryenzyme structureglutaric acidemiaglycosyltransferasehuman diseaseinhibition of autophagyinhibitormisfolded proteinmultidisciplinarynanomolarneurotoxicneurotoxicitynew therapeutic targetnovelnovel therapeutic interventionnovel therapeuticsparent grantpreventprogramsprotein aggregationprotein degradationprotein functionproteostasisresponsesensorsmall moleculestructural biologysynergismtherapeutic targetvirtual
项目摘要
Project Summary
The overall research in the Lazarus Lab revolves around studying energy and protein homeostasis as it
relates to human disease using chemical biology and structural biology. We have several multidisciplinary
projects around this topic, including studying the ULK family of autophagy kinases and pseudokinases, lysine
metabolism disorders, and other kinases related to diabetes and cancer. Over the last 4 years, we have used
crystallography and chemical biology to help develop highly potent inhibitors of the metabolic sensor O-GlcNAc
transferase, solved the first structures and identify the first chemical probes of the ULK pseudokinase linked to
schizophrenia ULK4, and helped elucidate the first structure of an enzyme in the lysine metabolic pathway
DHTKD1.
Our goals over the next five-year period include further understanding of the ULK family of kinases.
ULK1 and ULK2 are the main initiating enzymes for the autophagy pathway, a conserved metabolic pathway
whereby cellular components get degraded for quality control and energy generation during starvation. The
pathway is thought to be critical in diseases ranging from cancer to Alzheimer’s disease, yet there are still
major gaps in our understanding of the pathway. What happens to cells when you inhibit autophagy at different
stages of the pathway in different disease models using selective probes? What is the role of the mysterious
family member ULK4, which has no catalytic activity but binds ATP with nanomolar potency and likely has a
function for the ATP binding. Another major goal involves the lysine metabolic pathway, in which several inborn
errors of metabolism are found. How do the enzymes in this pathway function, and can inhibiting other
enzymes in this pathway block the toxic buildup of intermediates that arise in glutaric aciduria patients?
The overall vision of the research program is to develop chemical probes and obtain high-resolution
crystal structures to better understand key enzymes in these metabolic pathways and determine if they are
therapeutic targets for human diseases. Within the context of the Mount Sinai research community, we are
well-positioned to collaborate with our colleagues to leverage our strength in chemical and structural biology to
provide molecular understanding that synergizes with our colleagues’ expertise in human biology or medicinal
chemistry, like our overarching collaboration with the Drug Discovery Institute here and our collaborations that
involve cancer, genetic diseases, diabetes, and neurodegeneration. As new opportunities arise, we can
provide our expertise in the molecular underpinnings of glycosyltransferases, kinases and pseudokinases, and
protein degradation pathways to develop new projects supported by the MIRA funding, while still focusing on
the core projects described above.
项目摘要
拉撒路实验室的整体研究围绕着研究能量和蛋白质的体内平衡,
涉及利用化学生物学和结构生物学的人类疾病。我们有几个多学科的
围绕这一主题的项目,包括研究ULK家族的自噬激酶和假激酶,赖氨酸
代谢紊乱和其他与糖尿病和癌症相关的激酶。在过去的四年里,我们使用
晶体学和化学生物学,以帮助开发代谢传感器O-GlcNAc的高效抑制剂
转移酶,解决了第一个结构,并确定了与ULK假激酶连接的第一个化学探针。
精神分裂症ULK 4,并帮助阐明了赖氨酸代谢途径中酶的第一个结构
DHTKD 1.
我们未来五年的目标包括进一步了解ULK激酶家族。
ULK 1和ULK 2是自噬途径(一种保守的代谢途径)的主要起始酶
由此细胞成分在饥饿期间为了质量控制和能量产生而退化。的
这条通路被认为在从癌症到阿尔茨海默病的疾病中至关重要,但仍然存在
我们对这条道路的理解存在重大差距。当你在不同的温度下抑制自噬时,
阶段的途径在不同的疾病模型使用选择性探针?神秘的角色是什么
家族成员ULK 4,它没有催化活性,但以纳摩尔效力结合ATP,
ATP结合的功能。另一个主要目标涉及赖氨酸代谢途径,其中几个先天性
代谢的错误被发现。在这个途径中的酶是如何发挥作用的,以及抑制其他的酶是如何发挥作用的?
这种途径中的酶阻断了谷氨酸尿症患者中出现的中间产物的毒性积累?
该研究计划的总体愿景是开发化学探针并获得高分辨率
晶体结构,以更好地了解这些代谢途径中的关键酶,并确定它们是否
人类疾病的治疗目标。在西奈山研究社区的背景下,我们是
我们有能力与我们的同事合作,利用我们在化学和结构生物学方面的优势,
提供分子理解,与我们同事在人类生物学或医学方面的专业知识协同作用
化学,比如我们与这里的药物发现研究所的全面合作,
包括癌症、遗传疾病、糖尿病和神经退化。随着新机遇的出现,我们可以
提供我们在糖基转移酶、激酶和假激酶的分子基础方面的专业知识,
蛋白质降解途径,以开发由MIRA资助的新项目,同时仍然专注于
上述核心项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Block Lazarus其他文献
Michael Block Lazarus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Block Lazarus', 18)}}的其他基金
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10194214 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10380139 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9381909 - 财政年份:2017
- 资助金额:
$ 5.18万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9752600 - 财政年份:2017
- 资助金额:
$ 5.18万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10769149 - 财政年份:2017
- 资助金额:
$ 5.18万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
10226148 - 财政年份:2017
- 资助金额:
$ 5.18万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10405224 - 财政年份:2017
- 资助金额:
$ 5.18万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10662232 - 财政年份:2017
- 资助金额:
$ 5.18万 - 项目类别:
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:














{{item.name}}会员




