3D Printed Bioreactors for Cell Culture
用于细胞培养的 3D 打印生物反应器
基本信息
- 批准号:9279981
- 负责人:
- 金额:$ 33.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAllogenicAlpha CellArchitectureAreaAutologousBiological AssayBioreactorsBone InjuryBone TissueBone TransplantationCaliberCell CommunicationCell CountCell Culture TechniquesCell Differentiation processCell ProliferationCell SurvivalCellsCoculture TechniquesCommunitiesComplexComputer-Aided DesignCulture TechniquesCustomDevelopmentEncapsulatedEndothelial CellsEngineeringEnsureEnterochromaffin CellsEnvironmentGasesGelatinGene ExpressionGeometryGrowthHarvestHousingHumanHydrogelsImmune responseImplantIn VitroIncidenceInjuryLiquid substanceLocationMesenchymal Stem CellsModelingNutrientOrgan TransplantationOsteoblastsOxygenPathway interactionsPerfusionPhasePhenotypePolymersPolystyrenesPopulationPrintingProductionRetrievalSiteSourceStem cellsStructureSurfaceSystemTissue EngineeringTissuesTranslatingTrypsinTubular formationWorkbasebiodegradable polymerbiomaterial compatibilitybonebone engineeringcaprolactonecostdesigndispasedynamic systemflexibilityin vivomedical complicationmimeticsnovelrepairedscaffoldshear stresssubstantia spongiosathree dimensional cell culturetool
项目摘要
Project Summary
Traditional treatments for bone injuries have significant limitations. While over one million allogenic and
autologous bone grafting procedures are performed each year, significant incidences of medical complications
- often involving modest viability, poor integration, or an immune response - still occur. Therefore, the flexibility
provided by an in vitro cultured, engineered tissue provides an excellent avenue to repair and replace
damaged bone tissue. This approach involves seeding and growing a cell source on a scaffold and implanting
the cell-laden construct into the injury site. However, the culture of large volume engineered tissues - and
particularly cell viability, expansion, proliferation, and differentiation in these large tissues - is limited by current
culture techniques. To address this concern, TR&D1 aims to develop a 3D printed (3DP) bioreactor as a
dynamic culture system to control cellular microenvironment and therefore promote cell viability, expansion,
proliferation, and differentiation within large engineered constructs. To this end, we have recently developed a
tubular perfusion system (TPS) bioreactor that enables the expansion of human mesenchymal stem cells, the
differentiation of these cells into osteoblasts, and the subsequent formation of boney tissue. Based on our
earlier TPS bioreactor, we will use 3D printing to fabricate specialized bioreactor chambers with variable
architecture, controlled flow environments, and spatially located cell populations; thus, we can ensure
adequate availability of nutrients and oxygen for the expansion of stem cells within these large constructs.
Furthermore, 3D printing control of the spatial location of cell populations will allow us to determine interactions
between multiple cell populations, such as mesenchymal stem cells and endothelial cells. Finally, we will utilize
the strategies developed in the in vitro 3D bioreactor chambers to fabricate removable, biodegradable scaffolds
of engineered bone tissues that are suitable for in vivo application. The results of these studies will deliver a
3DP bioreactor system that can support the growth of large engineered tissues, while also providing a set of
tools to develop other, similarly designed, tissue specific bioreactor systems.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John P Fisher其他文献
Biomaterial Scaffolds in Pediatric Tissue Engineering
儿科组织工程中的生物材料支架
- DOI:
10.1203/01.pdr.0b013e318165eb3e - 发表时间:
2008-05-01 - 期刊:
- 影响因子:3.100
- 作者:
Minal Patel;John P Fisher - 通讯作者:
John P Fisher
John P Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John P Fisher', 18)}}的其他基金
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 33.86万 - 项目类别:
Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
- 批准号:
8512532 - 财政年份:2011
- 资助金额:
$ 33.86万 - 项目类别:
Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
- 批准号:
8704713 - 财政年份:2011
- 资助金额:
$ 33.86万 - 项目类别:
Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
- 批准号:
8245505 - 财政年份:2011
- 资助金额:
$ 33.86万 - 项目类别:
Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
- 批准号:
8333407 - 财政年份:2011
- 资助金额:
$ 33.86万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.86万 - 项目类别:
Research Grant