Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
基本信息
- 批准号:8333407
- 负责人:
- 金额:$ 33.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-16 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlginatesBioreactorsBone InjuryBone RegenerationBone TissueCalciumCell Culture TechniquesCell ProliferationCellsClinical TreatmentCoculture TechniquesCulture MediaDefectDepositionDevelopmentDevicesDiffusionDiseaseEncapsulatedEndothelial CellsEngineeringEnvironmentExcisionFosteringGoalsGrowthHealedHumanImplantIn VitroInvestigationLaboratoriesMechanical StressMechanicsMesenchymal Stem CellsMethodsNutrientOsteocalcinOsteogenesisOxygenPerfusionPolymersRegenerative MedicineStem cellsStructureSystemTechnologyTherapeuticTissue EngineeringTissue GraftsTissuesTranslatingTraumaTubular formationUmbilical veinUp-RegulationVascularizationbasebonecell growthclinical applicationclinically relevantdesignfluid flowhealingimplantationimprovedin vivoinnovationnovelosteoblast differentiationosteopontinoxygen transportrepairedresponsescaffoldshear stresssuccesstissue culturetreatment strategytumor
项目摘要
DESCRIPTION (provided by applicant): In vitro and in vivo nutrient transfer limits must be overcome in order to increase the feasibility of cell based therapeutic strategies. To enhance in vitro nutrient transport, the tubular perfusion system (TPS), a novel bioreactor recently developed by our laboratory, will dynamically culture human mesenchymal stem cells (hMSCs) in three dimensional scaffolds. This system utilizes an elegant design to create an effective cell culture environment without the drawbacks often associated with more complicated perfusion systems. The TPS design consists of hMSCs encapsulated in alginate beads which are tightly packed in a tubular growth chamber. Perfusing media through this growth chamber enhances nutrient transfer while exposing the cells to shear stress. To enhance in vivo vascularization, a prevascular network will be templated within the engineered tissue prior to implantation. To accomplish this, the TPS bioreactor will be optimized to support a coculture of endothelial cells and hMSCs. To examine this strategy of enhanced in vitro nutrient transport and in vivo vascularization, we propose first to investigate the TPS culture environment, particularly alginate bead size, bead composition, and media perfusion rate, that promotes hMSC proliferation and subsequent osteoblastic differentiation. Second, we propose to investigate the impact of endothelial cell coculture parameters, specifically coculture ratio, on the development of a prevascular network as well as the proliferation and differentiation of hMSCs. Third, we propose to implement a synthetic polymer sleeve system to support successful implantation of the in vitro cultured tissue. This strategy allows for the in vitro culture of functional engineered tissue, provides an elegant method for the in vivo implantation of the tissue, and fosters rapid integration of the implanted tissue into the host vasculature. Successful completion of these studies will demonstrate the feasibility of this fundamental technology for enhanced in vitro and in vivo nutrient transfer within cell based devices.
描述(由申请人提供):必须克服体外和体内营养转移限制,以增加基于细胞的治疗策略的可行性。为了增强体外营养转运,我们实验室最近开发的一种新型生物反应器管状灌注系统(TPS)将在三维支架中动态培养人间充质干细胞(hMSC)。该系统采用优雅的设计来创建有效的细胞培养环境,并且没有与更复杂的灌注系统相关的缺点。 TPS 设计由封装在藻酸盐珠中的 hMSC 组成,这些珠紧密地封装在管状生长室中。通过该生长室灌注培养基可增强营养物质转移,同时使细胞承受剪切应力。为了增强体内血管化,在植入之前,将在工程组织内模板化血管前网络。为了实现这一目标,TPS 生物反应器将进行优化,以支持内皮细胞和 hMSC 的共培养。为了检验这种增强体外营养转运和体内血管化的策略,我们建议首先研究促进 hMSC 增殖和随后成骨细胞分化的 TPS 培养环境,特别是藻酸盐珠大小、珠组成和培养基灌注速率。其次,我们建议研究内皮细胞共培养参数,特别是共培养比例,对血管前网络的发育以及 hMSC 的增殖和分化的影响。第三,我们建议实施合成聚合物套管系统以支持体外培养组织的成功植入。该策略允许功能性工程组织的体外培养,为组织的体内植入提供了一种优雅的方法,并促进植入的组织快速整合到宿主脉管系统中。这些研究的成功完成将证明这一基本技术在细胞设备内增强体外和体内营养转移的可行性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John P Fisher其他文献
Biomaterial Scaffolds in Pediatric Tissue Engineering
儿科组织工程中的生物材料支架
- DOI:
10.1203/01.pdr.0b013e318165eb3e - 发表时间:
2008-05-01 - 期刊:
- 影响因子:3.100
- 作者:
Minal Patel;John P Fisher - 通讯作者:
John P Fisher
John P Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John P Fisher', 18)}}的其他基金
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
- 批准号:
8512532 - 财政年份:2011
- 资助金额:
$ 33.27万 - 项目类别:
Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
- 批准号:
8704713 - 财政年份:2011
- 资助金额:
$ 33.27万 - 项目类别:
Application of Tubular Perfusion System (TPS) Generated Prevascularized Bone Tiss
管状灌注系统(TPS)产生预血管化骨组织的应用
- 批准号:
8245505 - 财政年份:2011
- 资助金额:
$ 33.27万 - 项目类别:
相似海外基金
Bioreactors to Replace Animal Testing in Bone Research
生物反应器取代骨骼研究中的动物测试
- 批准号:
NC/Y500562/1 - 财政年份:2024
- 资助金额:
$ 33.27万 - 项目类别:
Training Grant
SBIR Phase I: Bioreactors for Upcycling Pyrolyzed Polystyrene Waste into Organic Fertilizer
SBIR 第一阶段:将热解聚苯乙烯废物升级为有机肥料的生物反应器
- 批准号:
2303842 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Standard Grant
CAREER: Unlocking Recalcitrant Carbon to Enhance Denitrification of Nonpoint Source Nitrogen in Woodchip Bioreactors
职业:释放顽固碳以增强木片生物反应器中非点源氮的反硝化
- 批准号:
2237947 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Continuing Grant
Investigating the Assembly of Bacterial Encapsulins for the Efficient Engineering of Nanoscale Bioreactors
研究细菌封装蛋白的组装以实现纳米级生物反应器的高效工程
- 批准号:
2875161 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Studentship
Prototyping and Validating Novel Scalable Biomimetic Bioreactors for Low Carbon Cultivated Meat Production
用于低碳栽培肉生产的新型可扩展仿生生物反应器的原型设计和验证
- 批准号:
10072878 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Collaborative R&D
Redesigning bioreactors for sustainable bio-based manufacturing
重新设计生物反应器以实现可持续的生物基制造
- 批准号:
10066782 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Collaborative R&D
Real time Dual Laser Raman Reactor Analyser with Probe for key inorganic nutrients inside Microalgae Bioreactors
带探针的实时双激光拉曼反应器分析仪,用于分析微藻生物反应器内的关键无机营养物质
- 批准号:
10074658 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Grant for R&D
CELL EXPANSION BIOREACTORS FOR ASSAY-READY IMMUNOCOMPETENT PATIENT MODELS
用于检测准备的免疫功能正常患者模型的细胞扩增生物反应器
- 批准号:
10688981 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Earthworms as ploughs and bioreactors: understanding mechanical and biogeochemical impacts for sustainable soils
蚯蚓作为犁和生物反应器:了解可持续土壤的机械和生物地球化学影响
- 批准号:
2884067 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Studentship
Novel approach to production of high-value biochemicals and simultaneous removal of organic and other contaminants from waste streams using High-Rate Biomass Bioreactors
使用高速生物质生物反应器生产高价值生化产品并同时去除废物流中的有机和其他污染物的新方法
- 批准号:
RGPIN-2022-05332 - 财政年份:2022
- 资助金额:
$ 33.27万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




