Characterizing Schizophrenia Progression via Multi-modal Neuroimaging and Computation

通过多模式神经影像和计算表征精神分裂症进展

基本信息

  • 批准号:
    9272935
  • 负责人:
  • 金额:
    $ 39.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Schizophrenia (SCZ) is a disabling neurodevelopmental disorder causing profound cognitive impairment. SCZ is hypothesized to arise from synaptic disturbances affecting large-scale neural connectivity. This view is supported by neuroimaging studies that repeatedly show alterations in prefrontal cortex (PFC) function and connectivity and disruptions across thalamo-cortical and associative cortex circuits. However, the complex neurobiology of early-course SCZ remains uncharacterized, limiting treatments for early illness phases when intervention is crucial. This is a major objective for improving targeted therapies, predicting prognosis, and promoting early detection. Our overarching goal is to longitudinally characterize concurrent functional and structural dysconnectivity in early-course SCZ in relation to cognitive deficits via state-of-the-art neuroimaging. In turn, we aim to inform synaptic hypotheses underlying clinical neuroimaging effects via biophysically-based computational modeling scaled to the level of neural networks. To address these knowledge gaps, we will examine longitudinal progression of neural dysconnectivity in early-course SCZ patients after their initial admission into the Specialized Treatment Early in Psychosis (STEP) Clinic at Yale. In turn, we will follow patients longitudinally at 6, 12, and 24 months later in comparison with 50 matched healthy controls. To quantify dysconnectivity the project will use leading functional and structural methods optimized by the Human Connectome Project (HCP), in line with the NIMH Connectomes Related to Human Disease initiative. First, we aim to test if the recently identified PFC and thalamo-cortical markers exhibit concurrent (or dissociable) structural and functional alterations. This balanced longitudinal design can distinguish `state' versus `trait' neuroimaging markers during early illness course in relation to clinically-relevant variables. Specifically, examining effects of pharmacotherapy, treatment compliance, duration of untreated psychosis, and symptom severity, informs the clinical utility of these promising neuroimaging markers. Second, the project will test if these neuroimaging markers relate to severity of cognitive deficits - a hallmak clinical feature of SCZ. We aim to concurrently examine working memory (WM) via our validated neuroimaging paradigms to test if specific aspects of structural and functional dysconnectivity predict WM deficits. This provides a much-needed link between dysconnectivity and cognitive impairment in SCZ. Finally, to inform synaptic hypotheses behind neural dysconnectivity, such as cortical excitation-inhibition (E/I) imbalance resulting from hypo-function of the N-methyl-D-aspartate glutamate receptor (NMDAR), we aim to use biophysically-based computational models that incorporate relevant cellular detail. We aim to iteratively explore synaptic parameters governing E/I balance by fitting in silico effects with in vivo clinical neuroimaging findings. This computational psychiatry approach can help interpret dynamic neural dysconnectivity in SCZ via computational fits and yield new synaptic targets for treatment studies focused on early SCZ stages, when intervention is most vital.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALAN ANTICEVIC其他文献

ALAN ANTICEVIC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALAN ANTICEVIC', 18)}}的其他基金

A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
  • 批准号:
    10248465
  • 财政年份:
    2019
  • 资助金额:
    $ 39.53万
  • 项目类别:
A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
  • 批准号:
    10021712
  • 财政年份:
    2019
  • 资助金额:
    $ 39.53万
  • 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
  • 批准号:
    10543781
  • 财政年份:
    2018
  • 资助金额:
    $ 39.53万
  • 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
  • 批准号:
    10311477
  • 财政年份:
    2018
  • 资助金额:
    $ 39.53万
  • 项目类别:
Development of Thalamocortical Circuits and Cognitive Function in Healthy Individuals and Youth At-Risk for Psychosis
健康个体和有精神病风险的青少年丘脑皮质回路和认知功能的发展
  • 批准号:
    9893033
  • 财政年份:
    2018
  • 资助金额:
    $ 39.53万
  • 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
  • 批准号:
    10215418
  • 财政年份:
    2017
  • 资助金额:
    $ 39.53万
  • 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
  • 批准号:
    9910455
  • 财政年份:
    2017
  • 资助金额:
    $ 39.53万
  • 项目类别:
Administrative Supplement to 1R03MH105765: Neuropsychiatric Classification via Connectivity and Machine Learning
1R03MH105765 的行政补充:通过连接和机器学习进行神经精神分类
  • 批准号:
    9076865
  • 财政年份:
    2014
  • 资助金额:
    $ 39.53万
  • 项目类别:
Neuropsychiatric Classification via Connectivity and Machine Learning
通过连接和机器学习进行神经精神分类
  • 批准号:
    8808026
  • 财政年份:
    2014
  • 资助金额:
    $ 39.53万
  • 项目类别:
Characterizing Cognitive Impairment in Schizophrenia via Computational Modeling a
通过计算模型描述精神分裂症的认知障碍
  • 批准号:
    8715432
  • 财政年份:
    2012
  • 资助金额:
    $ 39.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了